Search results for: lagrange multiplier test
9367 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model
Authors: Nureni O. Adeboye, Dawud A. Agunbiade
Abstract:
This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity
Procedia PDF Downloads 1429366 Element-Independent Implementation for Method of Lagrange Multipliers
Authors: Gil-Eon Jeong, Sung-Kie Youn, K. C. Park
Abstract:
Treatment for the non-matching interface is an important computational issue. To handle this problem, the method of Lagrange multipliers including classical and localized versions are the most popular technique. It essentially imposes the interface compatibility conditions by introducing Lagrange multipliers. However, the numerical system becomes unstable and inefficient due to the Lagrange multipliers. The interface element-independent formulation that does not include the Lagrange multipliers can be obtained by modifying the independent variables mathematically. Through this modification, more efficient and stable system can be achieved while involving equivalent accuracy comparing with the conventional method. A numerical example is conducted to verify the validity of the presented method.Keywords: element-independent formulation, interface coupling, methods of Lagrange multipliers, non-matching interface
Procedia PDF Downloads 4039365 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation
Procedia PDF Downloads 2349364 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules
Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid
Abstract:
Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.Keywords: biological systems, DNA multiplier, large storage, parallel processing
Procedia PDF Downloads 2189363 Designing and Simulation of a CMOS Square Root Analog Multiplier
Authors: Milad Kaboli
Abstract:
A new CMOS low voltage current-mode four-quadrant analog multiplier based on the squarer circuit with voltage output is presented. The proposed circuit is composed of a pair of current subtractors, a pair differential-input V-I converters and a pair of voltage squarers. The circuit was simulated using HSPICE simulator in standard 0.18 μm CMOS level 49 MOSIS (BSIM3 V3.2 SPICE-based). Simulation results show the performance of the proposed circuit and experimental results are given to confirm the operation. This topology of multiplier results in a high-frequency capability with low power consumption. The multiplier operates for a power supply ±1.2V. The simulation results of analog multiplier demonstrate a THD of 0.65% in 10MHz, a −3dB bandwidth of 1.39GHz, and a maximum power consumption of 7.1mW.Keywords: analog processing circuit, WTA, LTA, low voltage
Procedia PDF Downloads 4779362 Numerical Iteration Method to Find New Formulas for Nonlinear Equations
Authors: Kholod Mohammad Abualnaja
Abstract:
A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms
Procedia PDF Downloads 5459361 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan
Authors: Lubna Naz, Munir Ahmad, G. M. Arif
Abstract:
This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation
Procedia PDF Downloads 3659360 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems
Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian
Abstract:
This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems
Procedia PDF Downloads 3759359 Further Results on Modified Variational Iteration Method for the Analytical Solution of Nonlinear Advection Equations
Authors: A. W. Gbolagade, M. O. Olayiwola, K. O. Kareem
Abstract:
In this paper, further to our result on recent paper on the solution of nonlinear advection equations, we present further results on the nonlinear nonhomogeneous advection equations using a modified variational iteration method.Keywords: lagrange multiplier, non-homogeneous equations, advection equations, mathematics
Procedia PDF Downloads 3029358 PID Control of Quad-Rotor Unnamed Vehicle Based on Lagrange Approach Modelling
Authors: A. Benbouali, H. Saidi, A. Derrouazin, T. Bessaad
Abstract:
Aerial robotics is a very exciting research field dealing with a variety of subjects, including the attitude control. This paper deals with the control of a four rotor vertical take-off and landing (VTOL) Unmanned Aerial Vehicle. The paper presents a mathematical model based on the approach of Lagrange for the flight control of an autonomous quad-rotor. It also describes the controller architecture which is based on PID regulators. The control method has been simulated in closed loop in different situations. All the calculation stages and the simulation results have been detailed.Keywords: quad-rotor, lagrange approach, proportional integral derivate (PID) controller, Matlab/Simulink
Procedia PDF Downloads 4009357 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization
Procedia PDF Downloads 3199356 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method
Authors: M. O. Olayiwola
Abstract:
Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation
Procedia PDF Downloads 4329355 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation
Procedia PDF Downloads 3639354 Performance Analysis of Arithmetic Units for IoT Applications
Authors: Nithiya C., Komathi B. J., Praveena N. G., Samuda Prathima
Abstract:
At present, the ultimate aim in digital system designs, especially at the gate level and lower levels of design abstraction, is power optimization. Adders are a nearly universal component of today's integrated circuits. Most of the research was on the design of high-speed adders to execute addition based on various adder structures. This paper discusses the ideal path for selecting an arithmetic unit for IoT applications. Based on the analysis of eight types of 16-bit adders, we found out Carry Look-ahead (CLA) produces low power. Additionally, multiplier and accumulator (MAC) unit is implemented with the Booth multiplier by using the low power adders in the order of preference. The design is synthesized and verified using Synopsys Design Compiler and VCS. Then it is implemented by using Cadence Encounter. The total power consumed by the CLA based booth multiplier is 0.03527mW, the total area occupied is 11260 um², and the speed is 2034 ps.Keywords: carry look-ahead, carry select adder, CSA, internet of things, ripple carry adder, design rule check, power delay product, multiplier and accumulator
Procedia PDF Downloads 1189353 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals
Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail
Abstract:
A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.Keywords: array signal processing, direction-of-arrival, antenna arrays, Eigenvalues, Eigenvectors, Lagrange multiplier
Procedia PDF Downloads 3349352 Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis
Authors: Hyun-Ho Lee, Kee-Won Kim
Abstract:
The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation.Keywords: finite field, Montgomery multiplication, systolic array, cryptography
Procedia PDF Downloads 2969351 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.Keywords: hemodynamics, simulations, stagnation, valve
Procedia PDF Downloads 2939350 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony
Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim
Abstract:
This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting
Procedia PDF Downloads 3309349 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach
Authors: Nina Ponikvar, Katja Zajc Kejžar
Abstract:
While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia
Procedia PDF Downloads 789348 Stem Covers of Leibniz n-Algebras
Authors: Natália Maria Rego
Abstract:
ALeibnizn-algebraGis aK-vector space endowed whit a n-linearbracket operation [-,…-] : GG … G→ Gsatisfying the fundamental identity, which can be expressed saying that the right multiplication map Ry2, …, ᵧₙ: Gn→ G, Rᵧ₂, …, ᵧₙn(ˣ¹, …, ₓₙ) = [[ˣ¹, …, ₓₙ], ᵧ₂, …, ᵧₙ], is a derivation. This structure, together with its skew-symmetric version, named as Lie n-algebra or Filippov algebra, arose in the setting of Nambumechanics, an n-ary generalization of the Hamiltonian mechanics. Thefirst goal of this work is to provide a characterization of various classes of central extensions of Leibniz n-algebras in terms of homological properties. Namely, Commutator extension, Quasi-commutator extension, Stem extension, and Stem cover. These kind of central extensions are characterized by means of the character of the map *(E): nHL1(G) → M provided by the five-term exact sequence in homology with trivial coefficients of Leibniz n-algebras associated to an extension E : 0 → M → K → G → 0. For a free presentation 0 →R→ F →G→ 0of a Leibniz n-algebra G,the term M(G) = (R[F,…n.., F])/[R, F,..n-1..,F] is called the Schur multiplier of G, which is a Baer invariant, i.e., it does not depend on the chosen free presentation, and it is isomorphic to the first Leibniz n-algebras homology with trivial coefficients of G. A central extension of Leibniz n-algebras is a short exact sequenceE : 0 →M→K→G→ 0such that [M, K,.. ⁿ⁻¹.., K]=0. It is said to be a stem extension if M⊆[G, .. n.., G]. Additionally, if the induced map M(K) → M(G) is the zero map, then the stem extension Eis said to be a stem cover. The second aim of this work is to analyze the interplay between stem covers of Leibniz n-algebras and the Schur multiplier. Concretely, in the case of finite-dimensional Leibniz n-algebras, we show the existence of coverings, and we prove that all stem covers with finite-dimensional Schur multiplier are isoclinic. Additionally, we characterize stem covers of perfect Leibniz n-algebras.Keywords: leibniz n-algebras, central extensions, Schur multiplier, stem cover
Procedia PDF Downloads 1589347 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements
Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul
Abstract:
A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.Keywords: postbuckling, finite element method, variational method, intrinsic coordinate
Procedia PDF Downloads 1589346 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 3859345 Optimization of Multiplier Extraction Digital Filter On FPGA
Authors: Shiksha Jain, Ramesh Mishra
Abstract:
One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table
Procedia PDF Downloads 3929344 Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements
Authors: Amir Moslehi, Gholamreza Raisali
Abstract:
Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons.Keywords: fast neutrons, geant4, multiple-thick gas electron multiplier, microdosimeter
Procedia PDF Downloads 3509343 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer
Procedia PDF Downloads 2129342 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation
Authors: Yuanhao Gao, Ping Lin, Kees Weijer
Abstract:
An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation
Procedia PDF Downloads 2609341 Effect of Fiscal Policy on Growth in India
Authors: Parma Chakravartti
Abstract:
The impact of government spending and taxation on economic growth has remained a central issue of fiscal policy analysis. There is a wide range of opinions over the strength of fiscal policy’s effect on macroeconomic variables. It can be argued that the impact of fiscal policy depends on the structure and economic condition of the economy. This study makes an attempt to examine the effect of fiscal policy shocks on growth in India using the structural vector autoregressive model (SVAR), considering data from 1950 to 2019. The study finds that government spending is an important instrument of growth in India, where the share of revenue expenditure to capital expenditure plays a key role. The optimum composition of total expenditure is important for growth and it is not necessarily true that capital expenditure multiplier is more than revenue expenditure multiplier. The study also finds that the impact of public economic activities on private economic activities for both consumption expenditure and gross capital formation of government crowds in private consumption expenditure and private gross capital formation, respectively, thus indicating that government expenditure complements private expenditure in India.Keywords: government spending, fiscal policy, multiplier, growth
Procedia PDF Downloads 1349340 Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms
Authors: Gaurav Gupta, Jitendra Mahakud
Abstract:
This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs.Keywords: cash flow, corporate investment, financing constraints, panel data method
Procedia PDF Downloads 2439339 Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020
Authors: Mustofa Mahmud Al Mamun
Abstract:
Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive.Keywords: business cycle, consumption multipliers, forecasted government spending, investment multipliers, local projection method, zero lower bound
Procedia PDF Downloads 2349338 Periodic Topology and Size Optimization Design of Tower Crane Boom
Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng
Abstract:
In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.Keywords: tower crane boom, topology optimization, size optimization, periodic, SKO, optimization criterion
Procedia PDF Downloads 554