Search results for: fractional brownian motion
1540 Mixed Sub-Fractional Brownian Motion
Authors: Mounir Zili
Abstract:
We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-Markovian and that it has non-stationary increments. We will also give the conditions under which it is a semimartingale. Finally, the main features of its sample paths will be specified.Keywords: mixed Gaussian processes, Sub-fractional Brownian motion, sample paths
Procedia PDF Downloads 4881539 Mixed-Sub Fractional Brownian Motion
Authors: Mounir Zili
Abstract:
We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-markovian and that it has non-stationary increments. We will also give the conditions under which it is a semi-martingale. Finally, the main features of its sample paths will be specified.Keywords: fractal dimensions, mixed gaussian processes, sample paths, sub-fractional brownian motion
Procedia PDF Downloads 4201538 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing
Authors: Changhong Guo, Shaomei Fang, Yong He
Abstract:
In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility
Procedia PDF Downloads 1631537 Approximation of the Time Series by Fractal Brownian Motion
Authors: Valeria Bondarenko
Abstract:
In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model
Procedia PDF Downloads 3761536 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process
Authors: Samaneh Rahimirshnani, Hossein Jafari
Abstract:
In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion
Procedia PDF Downloads 641535 Distribution of Maximum Loss of Fractional Brownian Motion with Drift
Authors: Ceren Vardar Acar, Mine Caglar
Abstract:
In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process
Procedia PDF Downloads 4831534 Weak Solutions Of Stochastic Fractional Differential Equations
Authors: Lev Idels, Arcady Ponosov
Abstract:
Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.Keywords: delay equations, operator methods, stochastic noise, weak solutions
Procedia PDF Downloads 2091533 Lie Symmetry Treatment for Pricing Options with Transactions Costs under the Fractional Black-Scholes Model
Authors: B. F. Nteumagne, E. Pindza, E. Mare
Abstract:
We apply Lie symmetries analysis to price and hedge options in the fractional Brownian framework. The reputation of Lie groups is well spread in the area of Mathematical sciences and lately, in Finance. In the presence of transactions costs and under fractional Brownian motions, analytical solutions become difficult to obtain. Lie symmetries analysis allows us to simplify the problem and obtain new analytical solution. In this paper, we investigate the use of symmetries to reduce the partial differential equation obtained and obtain the analytical solution. We then proposed a hedging procedure and calibration technique for these types of options, and test the model on real market data. We show the robustness of our methodology by its application to the pricing of digital options.Keywords: fractional brownian model, symmetry, transaction cost, option pricing
Procedia PDF Downloads 3991532 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet
Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu
Abstract:
The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.Keywords: Boundary layer, nanofluid, shrinking sheet, Brownian motion, thermophoresis, similarity solution
Procedia PDF Downloads 4151531 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 981530 Chern-Simons Equation in Financial Theory and Time-Series Analysis
Authors: Ognjen Vukovic
Abstract:
Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics
Procedia PDF Downloads 4731529 Forecasting Silver Commodity Prices Using Geometric Brownian Motion: A Stochastic Approach
Authors: Sina Dehghani, Zhikang Rong
Abstract:
Historically, a variety of approaches have been taken to forecast commodity prices due to the significant implications of these values on the global economy. An accurate forecasting tool for a valuable commodity would significantly benefit investors and governmental agencies. Silver, in particular, has grown significantly as a commodity in recent years due to its use in healthcare and technology. This manuscript aims to utilize the Geometric Brownian Motion predictive model to forecast silver commodity prices over multiple 3-year periods. The results of the study indicate that the model has several limitations, particularly its inability to work effectively over longer periods of time, but still was extremely effective over shorter time frames. This study sets a baseline for silver commodity forecasting with GBM, and the model could be further strengthened with refinement.Keywords: geometric Brownian motion, commodity, risk management, volatility, stochastic behavior, price forecasting
Procedia PDF Downloads 231528 The Volume–Volatility Relationship Conditional to Market Efficiency
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
The relation between stock price volatility and trading volume represents a controversial issue which has received a remarkable attention over the past decades. In fact, an extensive literature shows a positive relation between price volatility and trading volume in the financial markets, but the causal relationship which originates such association is an open question, from both a theoretical and empirical point of view. In this regard, various models, which can be considered as complementary rather than competitive, have been introduced to explain this relationship. They include the long debated Mixture of Distributions Hypothesis (MDH); the Sequential Arrival of Information Hypothesis (SAIH); the Dispersion of Beliefs Hypothesis (DBH); the Noise Trader Hypothesis (NTH). In this work, we analyze whether stock market efficiency can explain the diversity of results achieved during the years. For this purpose, we propose an alternative measure of market efficiency, based on the pointwise regularity of a stochastic process, which is the Hurst–H¨older dynamic exponent. In particular, we model the stock market by means of the multifractional Brownian motion (mBm) that displays the property of a time-changing regularity. Mostly, such models have in common the fact that they locally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local Hurst–H¨older exponent in a neighborhood of t0 equals the exponent of a fractional Brownian motion of parameter H(t0)). Assuming that the stock price follows an mBm, we introduce and theoretically justify the Hurst–H¨older dynamical exponent as a measure of market efficiency. This allows to measure, at any time t, markets’ departures from the martingale property, i.e. from efficiency as stated by the Efficient Market Hypothesis. This approach is applied to financial markets; using data for the SP500 index from 1978 to 2017, on the one hand we find that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time. Conversely, it disappears as soon as efficiency is taken into account. In particular, this association is more pronounced during time frames of high volatility and tends to disappear when market becomes fully efficient.Keywords: volume–volatility relationship, efficient market hypothesis, martingale model, Hurst–Hölder exponent
Procedia PDF Downloads 781527 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 3711526 Modified Fractional Curl Operator
Authors: Rawhy Ismail
Abstract:
Applying fractional calculus in the field of electromagnetics shows significant results. The fractionalization of the conventional curl operator leads to having additional solutions to an electromagnetic problem. This work restudies the concept of the fractional curl operator considering fractional time derivatives in Maxwell’s curl equations. In that sense, a general scheme for the wave loss term is introduced and the degree of freedom of the system is affected through imposing the new fractional parameters. The conventional case is recovered by setting all fractional derivatives to unity.Keywords: curl operator, fractional calculus, fractional curl operators, Maxwell equations
Procedia PDF Downloads 4871525 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet
Procedia PDF Downloads 2181524 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet
Authors: Rangoli Goyal, Rama Bhargava
Abstract:
The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion
Procedia PDF Downloads 4201523 Fractional Calculus into Structural Dynamics
Authors: Jorge Lopez
Abstract:
In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods.Keywords: coupled oscillators, fractional calculus, fractional oscillator, structural dynamics
Procedia PDF Downloads 2421522 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis
Procedia PDF Downloads 3891521 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations
Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane
Abstract:
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.Keywords: chaos, fractional-order, Melnikov method, nanobeam
Procedia PDF Downloads 1591520 Fractional Order Differentiator Using Chebyshev Polynomials
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh Kumar Pandey
Abstract:
A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method.Keywords: fractional order derivative, chebyshev polynomials, signals, S-G differentiator
Procedia PDF Downloads 6481519 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative
Authors: Ramzi B. Albadarneh
Abstract:
In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula
Procedia PDF Downloads 4391518 Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions
Authors: Trilok Mathur, Shivi Agarwal
Abstract:
This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods.Keywords: Caputo-type fuzzy fractional derivative, Fractional Riccati differential equations, Laplace-Adomian-Pade method, Mittag Leffler function
Procedia PDF Downloads 3951517 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 3581516 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations
Authors: Yildiray Keskin, Omer Acan, Murat Akkus
Abstract:
In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial
Procedia PDF Downloads 5251515 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems
Authors: Ali Dorostkar
Abstract:
In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.Keywords: tangent line, fractional dimension, root, optimization problem
Procedia PDF Downloads 1921514 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances
Authors: Shabnam Pashaei, Mohammadali Badamchizadeh
Abstract:
This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization
Procedia PDF Downloads 4101513 Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems
Authors: Kazem Ghanbari, Yousef Gholami
Abstract:
This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators.Keywords: fractional derivatives and integrals, Hamiltonian system, Lyapunov-type inequalities, stability, disconjugacy
Procedia PDF Downloads 3551512 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species
Authors: Kamel Al-Khaled
Abstract:
Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species
Procedia PDF Downloads 3751511 Application of Fractional Model Predictive Control to Thermal System
Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi
Abstract:
The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control
Procedia PDF Downloads 411