Search results for: extreme streamflow
921 Application of Stochastic Models to Annual Extreme Streamflow Data
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river
Procedia PDF Downloads 146920 Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast
Authors: Sara Patricia Ibarra-Zavaleta, Rabindranarth Romero-Lopez, Rosario Langrave, Annie Poulin, Gerald Corzo, Mathias Glaus, Ricardo Vega-Azamar, Norma Angelica Oropeza
Abstract:
The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.Keywords: HYDROTEL, hydraulic power, extreme hydrometeorological events, streamflow
Procedia PDF Downloads 339919 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 283918 Challenge of Baseline Hydrology Estimation at Large-Scale Watersheds
Authors: Can Liu, Graham Markowitz, John Balay, Ben Pratt
Abstract:
Baseline or natural hydrology is commonly employed for hydrologic modeling and quantification of hydrologic alteration due to manmade activities. It can inform planning and policy related efforts for various state and federal water resource agencies to restore natural streamflow flow regimes. A common challenge faced by hydrologists is how to replicate unaltered streamflow conditions, particularly in large watershed settings prone to development and regulation. Three different methods were employed to estimate baseline streamflow conditions for 6 major subbasins the Susquehanna River Basin; those being: 1) incorporation of consumptive water use and reservoir operations back into regulated gaged records; 2) using a map correlation method and flow duration (exceedance probability) regression equations; 3) extending the pre-regulation streamflow records based on the relationship between concurrent streamflows at unregulated and regulated gage locations. Parallel analyses were perform among the three methods and limitations associated with each are presented. Results from these analyses indicate that generating baseline streamflow records at large-scale watersheds remain challenging, even with long-term continuous stream gage records available.Keywords: baseline hydrology, streamflow gage, subbasin, regression
Procedia PDF Downloads 323917 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin
Authors: Goksel Ezgi Guzey, Bihrat Onoz
Abstract:
The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower
Procedia PDF Downloads 128916 Climate Change Effects in a Mediterranean Island and Streamflow Changes for a Small Basin Using Euro-Cordex Regional Climate Simulations Combined with the SWAT Model
Authors: Pier Andrea Marras, Daniela Lima, Pedro Matos Soares, Rita Maria Cardoso, Daniela Medas, Elisabetta Dore, Giovanni De Giudici
Abstract:
Climate change effects on the hydrologic cycle are the main concern for the evaluation of water management strategies. Climate models project scenarios of precipitation changes in the future, considering greenhouse emissions. In this study, the EURO-CORDEX (European Coordinated Regional Downscaling Experiment) climate models were first evaluated in a Mediterranean island (Sardinia) against observed precipitation for a historical reference period (1976-2005). A weighted multi-model ensemble (ENS) was built, weighting the single models based on their ability to reproduce observed rainfall. Future projections (2071-2100) were carried out using the 8.5 RCP emissions scenario to evaluate changes in precipitations. ENS was then used as climate forcing for the SWAT model (Soil and Water Assessment Tool), with the aim to assess the consequences of such projected changes on streamflow and runoff of two small catchments located in the South-West Sardinia. Results showed that a decrease of mean rainfall values, up to -25 % at yearly scale, is expected for the future, along with an increase of extreme precipitation events. Particularly in the eastern and southern areas, extreme events are projected to increase by 30%. Such changes reflect on the hydrologic cycle with a decrease of mean streamflow and runoff, except in spring, when runoff is projected to increase by 20-30%. These results stress that the Mediterranean is a hotspot for climate change, and the use of model tools can provide very useful information to adopt water and land management strategies to deal with such changes.Keywords: EURO-CORDEX, climate change, hydrology, SWAT model, Sardinia, multi-model ensemble
Procedia PDF Downloads 213915 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 129914 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.Keywords: chronological sequence of discharges, recession curves, streamflow duration curves, water concession
Procedia PDF Downloads 184913 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests
Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor
Abstract:
Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration
Procedia PDF Downloads 170912 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 240911 An Extension of the Generalized Extreme Value Distribution
Authors: Serge Provost, Abdous Saboor
Abstract:
A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.Keywords: extreme value theory, generalized extreme value distribution, goodness-of-fit statistics, Gumbel distribution
Procedia PDF Downloads 349910 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China
Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang
Abstract:
Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.Keywords: DLBRM, Northwestern China, spatial variation, water allocation
Procedia PDF Downloads 300909 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia
Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng
Abstract:
The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin
Procedia PDF Downloads 110908 Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample
Authors: Mahmoud I. Syam, Kamarulzaman Ibrahim, Amer I. Al-Omari
Abstract:
Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.Keywords: double extreme ranked set sampling, extreme ranked set sampling, ranked set sampling, stratified double extreme ranked set sampling
Procedia PDF Downloads 455907 Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment
Authors: Hashim Isam Jameel Al-Safi, P. Ranjan Sarukkalige
Abstract:
Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.Keywords: climate change impact, Harvey catchment, HBV model, hydrological modelling, GCMs, LARS-WG
Procedia PDF Downloads 260906 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 68905 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 533904 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 69903 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 151902 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate
Procedia PDF Downloads 338901 Climate Change and Extreme Weather: Understanding Interconnections and Implications
Authors: Johnstone Walubengo Wangusi
Abstract:
Climate change is undeniably altering the frequency, intensity, and geographic distribution of extreme weather events worldwide. In this paper, we explore the complex interconnections between climate change and extreme weather phenomena, drawing upon research from atmospheric science, geology, and climatology. We examine the underlying mechanisms driving these changes, the impacts on natural ecosystems and human societies, and strategies for adaptation and mitigation. By synthesizing insights from interdisciplinary research, this paper aims to provide a comprehensive understanding of the multifaceted relationship between climate change and extreme weather, informing efforts to address the challenges posed by a changing climate.Keywords: climate change, extreme weather, atmospheric science, geology, climatology, impacts, adaptation, mitigation
Procedia PDF Downloads 60900 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability
Authors: Warda L. Panondi, Norihiro Izumi
Abstract:
Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model
Procedia PDF Downloads 207899 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure
Procedia PDF Downloads 326898 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda
Authors: Emmanuel Iyamuremye
Abstract:
Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution
Procedia PDF Downloads 134897 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 442896 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment
Authors: Leon Pan
Abstract:
The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning
Procedia PDF Downloads 58895 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities
Authors: Retius Chifurira
Abstract:
Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities
Procedia PDF Downloads 198894 A Bayesian Model with Improved Prior in Extreme Value Problems
Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro
Abstract:
In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior
Procedia PDF Downloads 196893 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia
Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa
Abstract:
Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling
Procedia PDF Downloads 275892 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 22