Search results for: dropout rates
2967 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1752966 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials
Abstract:
Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis
Procedia PDF Downloads 4152965 Improving Part-Time Instructors’ Academic Outcomes with Gamification
Authors: Jared R. Chapman
Abstract:
This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.Keywords: gamification, engagement, motivation, academic outcomes
Procedia PDF Downloads 692964 Exploring the Underlying Factors of Student Dropout in Makawanpur Multiple Campus: A Comprehensive Analysis
Authors: Uttam Aryal, Shekhar Thapaliya
Abstract:
This research paper presents a comprehensive analysis of the factors contributing to student dropout at Makawanpur Multiple Campus, utilizing primary data collected directly from dropped out as well as regular students and academic staff. Employing a mixed-method approach, combining qualitative and quantitative methods, this study examines into the complicated issue of student dropout. Data collection methods included surveys, interviews, and a thorough examination of academic records covering multiple academic years. The study focused on students who left their programs prematurely, as well as current students and academic staff, providing a well-rounded perspective on the issue. The analysis reveals a shaded understanding of the factors influencing student dropout, encompassing both academic and non-academic dimensions. These factors include academic challenges, personal choices, socioeconomic barriers, peer influences, and institutional-related issues. Importantly, the study highlights the most influential factors for dropout, such as the pursuit of education abroad, financial restrictions, and employment opportunities, shedding light on the complex web of circumstances that lead students to discontinue their education. The insights derived from this study offer actionable recommendations for campus administrators, policymakers, and educators to develop targeted interventions aimed at reducing dropout rates and improving student retention. The study underscores the importance of addressing the diverse needs and challenges faced by students, with the ultimate goal of fostering a supportive academic environment that encourages student success and program completion.Keywords: drop out, students, factors, opportunities, challenges
Procedia PDF Downloads 642963 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 772962 Students Dropout in the Plantation settlement: A Case Study in Sri Lanka
Authors: Irshana Muhamadhu Razmy
Abstract:
Education is one of the main necessities for a modern society to access wealth as well as to achieve social well-being. Education contributes to enhancing as well as developing the social and economic status of an individual and building a vibrant community within a strong nation. The student dropout problem refers to students who enrolled in a school and are later unable to complete their grade education due to multiple factors). In Sri Lanka, the tea plantation sector is a prominent sector. The tea plantation sector is different from other plantation sectors such as palm oil, rubber, and coconut. Therefore, the present study particularly focuses on the influencing factors of student dropout in the tea plantation sector in Sri Lanka by conducting research in the Labookellie estate in Nuwera Eliya District. this research has opted to use both qualitative and quantitative methods. This study examines the factors associated with student dropout namely the family, school, and the social by the characteristic (gender, grade, and ethnicity) in the plantation area in the Labookellie estate.Keywords: student dropout, school, plantation settlement, social environmental
Procedia PDF Downloads 1832961 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 4552960 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems
Procedia PDF Downloads 3642959 A Survey on Students' Intentions to Dropout and Dropout Causes in Higher Education of Mongolia
Authors: D. Naranchimeg, G. Ulziisaikhan
Abstract:
Student dropout problem has not been recently investigated within the Mongolian higher education. A student dropping out is a personal decision, but it may cause unemployment and other social problems including low quality of life because students who are not completed a degree cannot find better-paid jobs. The research aims to determine percentage of at-risk students, and understand reasons for dropouts and to find a way to predict. The study based on the students of the Mongolian National University of Education including its Arkhangai branch school, National University of Mongolia, Mongolian University of Life Sciences, Mongolian University of Science and Technology, Mongolian National University of Medical Science, Ikh Zasag International University, and Dornod University. We conducted the paper survey by method of random sampling and have surveyed about 100 students per university. The margin of error - 4 %, confidence level -90%, and sample size was 846, but we excluded 56 students from this study. Causes for exclusion were missing data on the questionnaire. The survey has totally 17 questions, 4 of which was demographic questions. The survey shows that 1.4% of the students always thought to dropout whereas 61.8% of them thought sometimes. Also, results of the research suggest that students’ dropouts from university do not have relationships with their sex, marital and social status, and peer and faculty climate, whereas it slightly depends on their chosen specialization. Finally, the paper presents the reasons for dropping out provided by the students. The main two reasons for dropouts are personal reasons related with choosing wrong study program, not liking the course they had chosen (50.38%), and financial difficulties (42.66%). These findings reveal the importance of early prevention of dropout where possible, combined with increased attention to high school students in choosing right for them study program, and targeted financial support for those who are at risk.Keywords: at risk students, dropout, faculty climate, Mongolian universities, peer climate
Procedia PDF Downloads 3972958 Predictors of School Drop out among High School Students
Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas
Abstract:
The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout
Procedia PDF Downloads 2842957 Open Trial of Group Schema Therapy for the Treatment of Eating Disorders
Authors: Evelyn Smith, Susan Simpson
Abstract:
Background: Eating disorder (ED) treatment is complicated by high rates of chronicity, comorbidity, complex personality traits and client dropout. Given these complexities, Schema Therapy (ST) has been identified as a suitable treatment option. The study primarily aims to evaluate the efficacy of group ST for the treatment of EDs. The study further evaluated the effectiveness of ST in reducing schemas and improving quality of life. Method: Participant suitability was ascertained using the Eating Disorder Examination. Following this, participants attended 90-minute weekly group sessions over 25 weeks. Groups consisted of six to eight participants and were facilitated by two psychologists, at least one of who is trained in ST. Measures were completed at pre, mid and post-treatment. Measures assessed ED symptoms, cognitive schemas, schema mode presentations, quality of life, self-compassion and psychological distress. Results: As predicted, measures of ED symptoms were significantly reduced following treatment. No significant changes were observed in early maladaptive schema severity; however, reductions in schema modes were observed. Participants did not report improvements in general quality of life measures following treatment, though improvement in psychological well-being was observed. Discussion: Overall, the findings from the current study support the use of group ST for the treatment of EDs. It is expected that lengthier treatment is needed for the reduction in schema severity. Given participant dropout was considerably low, this has important treatment implications for the suitability of ST for the treatment of EDs.Keywords: eating disorders, schema therapy, treatment, quality of life
Procedia PDF Downloads 792956 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations
Authors: Gilbert Makanda
Abstract:
The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.Keywords: differential equations, knowledge acquisition, least squares, dynamical systems
Procedia PDF Downloads 4232955 Geography Undergraduates 360⁰ Academic Peer Learning And Mentoring 2021 – 2023: A Pilot Study
Authors: N. Ayob, N. C. Nkosi, R. P. Burger, S. J. Piketh, F. Letlaila, O. Maphosa
Abstract:
South African higher tertiary institution have been faced with high dropout rates. About 50 to 60% of first years drop out to due to various reasons one being inadequate academic support. Geography 111 (GEOG 111) module is historically known for having below 50% pass rate, high dropout rate and identified as a first year risk module. For the first time GEOG 111 (2021) on the Mahikeng Campus admitted 150 students pursuing more than 6 different qualifications (BA and BSc) from the Humanities Faculty and FNAS. First year students had difficulties transitioning from secondary to tertiary institutions as we shifted to remote learning while we navigate through the Covid-19 pandemic. The traditional method of teaching does not encourage students to help each other. With remote learning we do not have control over what the students share and perhaps this can be a learning opportunity to embrace peer learning and change the manner in which we assess the students. The purpose of this pilot study was to assist GEOG111 students with academic challenges whilst improving their University experience. This was a qualitative study open to all GEOG111, repeaters, students who are not confident in their Geographical knowledge and never did Geography at high school level. The selected 9 Golden Key International Honour Society Geography mentors attended an academic mentor training program with module lecturers. About 17.6% of the mentees did not have a geography background however, 94% of the mentees passed, 1 mentee had a mark of 38%. 11 of the participants had a mark >60% with one student that excelled 70%. It is evident that mentorship helped students reach their academic potential. Peer learning and mentoring are associated with improved academic performance and allows the students to take charge of their learning and academic experience. Thus an important element as we transform pedagogies at higher learning institutions.Keywords: geography, risk module, peer mentoring, peer learning
Procedia PDF Downloads 1542954 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 732953 Incorporating Cultural Assets in Yucatec Maya Mathematics Classrooms.
Authors: Felicia Darling
Abstract:
In Yucatec Maya middle schools in the Yucatán, mathematics scores are low and high school dropout rates are high. While addressing larger social and economic causes is crucial, improving mathematics instruction is a feasible approach. This paper draws from a six-month ethnographic, mixed-method study documenting two cultural approaches to problem solving. It explores the extent to which middle school mathematics instruction capitalizes upon these cultural assets and pilots two real-life mathematics tasks that incorporate them. Findings add details to the school/community culture gap around mathematics knowledge and have implications for mathematics education for marginalized students in México and the US.Keywords: math education, indigenous, Maya, cultural assets, secondary school, teacher education
Procedia PDF Downloads 172952 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 3382951 Interrogation of the Role of First Year Student Experiences in Student Success at a University of Technology in South Africa
Authors: Livingstone Makondo
Abstract:
This ongoing research explores what could be the components of a comprehensive First-Year Student Experience (FYSE) at the Durban University of Technology (DUT) and the preferred implementation modalities. In light of the Siyaphumelela project, this interrogation is premised on the need to glean data for the institution that could be used to ascertain the role of FYSE towards enhancing student success. The research proceeds by examining prevalent models from other South African Universities and beyond in its quest to get at pragmatic comprehensive FYSE programme for DUT. As DUT is a student centered institution and amidst the ever shrinking economy, this research would aid higher education practitioners to ascertain if the hard earned finances are being channelled to a worthy academic venture. This research seeks to get inputs from a) students who participated in FYSE and are now in second and third years at DUT b) students who are currently participating in FYSE c) former and present Tutors d) departmental coordinators e) academics and support staff working with the participating students. This exploratory approach is preferred since 2010 DUT has grappled with how to implement an integrated institution-wide FYSE. This findings of this research could provide the much-needed data to ascertain if the current FYSE package is pivotal towards attainment of DUT Strategic Focus Area 1: Building sustainable student communities of living and learning. The ideal is to have DUT FYSE programme become an institution-wide programme that lays the foundation for consolidated and focused student development programmes for subsequent undergraduate and postgraduate levels of study. Also, armed with data from this research, DUT could develop the capacity and systems to ensure that all students get diverse on-time support to enhance their retention and academic success in their tertiary studies. In essence, the preferred FYSE curriculum woven around DUT graduate attributes should contribute towards the reduction in the first-year students’ dropout rates and subsequently in undergraduate studies. Therefore, this on-going research will feed into Siyaphumelela project and would help position 2018-2020 FYSE initiatives at DUT.Keywords: challenges, comprehensive, dropout, transition
Procedia PDF Downloads 1602950 Turkish Graduate Students' Perceptions of Drop Out Issues in Massive Open Online Courses
Authors: Harun Bozna
Abstract:
MOOC (massive open online course) is a groundbreaking education platform and a current buzzword in higher education. Although MOOCs offer many appreciated learning experiences to learners from various universities and institutions, they have considerably higher dropout rates than traditional education. Only about 10% of the learners who enroll in MOOCs actually complete the course. In this case, perceptions of participants and a comprehensive analysis of MOOCs have become an essential part of the research in this area. This study aims to explore the MOOCs in detail for better understanding its content, purpose and primarily drop out issues. The researcher conducted an online questionnaire to get perceptions of graduate students on their learning experiences in MOOCs and arranged a semi- structured oral interview with some participants. The participants are Turkish graduate level students doing their MA and Ph.D. in various programs. The findings show that participants are more likely to drop out courses due to lack of time and lack of pressure.Keywords: distance education, MOOCs, drop out, perception of graduate students
Procedia PDF Downloads 2402949 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half
Authors: Said Fares, Mary Fares
Abstract:
It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.Keywords: failure rate, interactive learning, student engagement, CS1
Procedia PDF Downloads 3082948 Comparison of the Positive and Indeterminate Rates of QuantiFERON-TB Gold In-Tube and T-SPOT. TB According to Age-group
Authors: Kina Kim
Abstract:
Background: There are two types of interferon-gamma release assays (IGRAs) in use for the detection of latent tuberculosis infection (LTBI), QuantiFERON-TB Gold In-tube (QFT-GIT) and T-SPOT.TB. There are some reports that IGRA results are affected by the patient's age. This study aims to compare the results of both IGRA tests according to age groups. Methods: We reviewed 54,882 samples referred to an independent reference laboratory (Seegene Medical Foundation, Seoul, Korea) for the diagnosis of LTBI from January 1, 2021, to December 31, 2021. This retrospective study enrolled 955 patients tested using QFT-GIT and 53,927 patients tested using T-SPOT.TB. The results of both IGRAs were divided in three age groups (0-9, 10-17, and ≥18-year old). The positive rates and the indeterminate rates between QFT-GIT and T-SPOT.TB were compared. We also evaluated the differences in positive and indeterminate rates by age-group. Results: The positive rate of QFT-GIT was 20.1% (192/955) and that of T-SPOT.TB was 8.7% (4704/53927) in overall patients. The positive rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18-year old were 15.4%, 13.3%, and 22.0%, respectively. The positive rates of T-SPOT.TB were 8.9%, 2.0% and 8.8%,in each agegroup, respectively.The overall prevalence of indeterminate results was 2.1% (20/955) of QFT-GIT and 0.5% (270/53927) of T-SPOT.TB. The indeterminate rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18 years were 0.4%, 6.7%, and 2.6%, respectively. The indeterminate rate of T-SPOT.TB were 0.5%, 0.7% and 0.5%,in each age group, respectively. Conclusion: Our findings suggest that T-SPOT.TB has a lower rate of positive results in overall patients and a lower rate of indeterminate results than those of QFT-GIT. The highest positive rate was found in the over 18 years group for QFT-GIT, but the positive rates of T-SPOT.TB was not significantly different among groups by age. QFT-GIT showed variable and higher indeterminate rates according to age group, but T-SPOT.TB showed lower rates in all age groups(<1%).Keywords: LTBI, IGRA, QFT-GIT, T-SPOT. TB
Procedia PDF Downloads 1222947 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 2052946 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA
Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz
Abstract:
This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH–independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.Keywords: DNA and RNA models, relative rates, reactivity, phosphoryl transfe
Procedia PDF Downloads 4232945 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends
Authors: Dena Alhaloul
Abstract:
The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.Keywords: fertility, distribution, modeling, regression
Procedia PDF Downloads 812944 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia
Authors: Yenni Anggrayni
Abstract:
The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement
Procedia PDF Downloads 702943 The Effect of Visual Fluency and Cognitive Fluency on Access Rates of Web Pages
Authors: Xiaoying Guo, Xiangyun Wang
Abstract:
Access rates is a key indicator of reflecting the popularity of web pages. Having high access rates are very important for web pages, especially for news web pages, online shopping sites and searching engines. In this paper, we analyzed the influences of visual fluency and cognitive fluency on access rates of Chinese web pages. Firstly, we conducted an experiment of scoring the web pages. Twenty-five subjects were invited to view top 50 web pages of China, and they were asked to give a score in a 5-point Likert-scale from four aspects, including complexity, comfortability, familiarity and usability. Secondly, the obtained results was analyzed by correlation analysis and factor analysis in R. By factor analysis; we analyzed the contributions of visual fluency and cognitive fluency to the access rates. The results showed that both visual fluency and cognitive fluency affect the access rate of web pages. Compared to cognitive fluency, visual fluency play a more important role in user’s accessing of web pages.Keywords: visual fluency, cognitive fluency, visual complexity, usability
Procedia PDF Downloads 3792942 Net Interest Margin of Cooperative Banks in Low Interest Rate Environment
Authors: Karolína Vozková, Matěj Kuc
Abstract:
This paper deals with the impact of decrease in interest rates on the performance of commercial and cooperative banks in the Eurozone measured by net interest margin. The analysis was performed on balanced dataset of 268 commercial and 726 cooperative banks spanning the 2008-2015 period. We employed Fixed Effects estimation panel method. As expected, we found a negative relationship between market rates and net interest margin. Our results suggest that the impact of negative interest income differs across individual banking business models. More precisely, those cooperative banks were much more hit by the decrease of market interest rates which might be due to their ownership structure and more restrictive business regulation.Keywords: cooperative banks, performance, negative interest rates, risk management
Procedia PDF Downloads 1822941 A Deep Dive into the Multi-Pronged Nature of Student Engagement
Authors: Rosaline Govender, Shubnam Rambharos
Abstract:
Universities are, to a certain extent, the source of under-preparedness ideologically, structurally, and pedagogically, particularly since organizational cultures often alienate students by failing to enable epistemological access. This is evident in the unsustainably low graduation rates that characterize South African higher education, which indicate that under 30% graduate in minimum time, under two-thirds graduate within 6 years, and one-third have not graduated after 10 years. Although the statistics for the Faculty of Accounting and Informatics at the Durban University of Technology (DUT) in South Africa have improved significantly from 2019 to 2021, the graduation (32%), throughput (50%), and dropout rates (16%) are still a matter for concern as the graduation rates, in particular, are quite similar to the national statistics. For our students to succeed, higher education should take a multi-pronged approach to ensure student success, and student engagement is one of the ways to support our students. Student engagement depends not only on students’ teaching and learning experiences but, more importantly, on their social and academic integration, their sense of belonging, and their emotional connections in the institution. Such experiences need to challenge students academically and engage their intellect, grow their communication skills, build self-discipline, and promote confidence. The aim of this mixed methods study is to explore the multi-pronged nature of student success within the Faculty of Accounting and Informatics at DUT and focuses on the enabling and constraining factors of student success. The sources of data were the Mid-year student experience survey (N=60), the Hambisa Student Survey (N=85), and semi structured focus group interviews with first, second, and third year students of the Faculty of Accounting and Informatics Hambisa program. The Hambisa (“Moving forward”) focus area is part of the Siyaphumelela 2.0 project at DUT and seeks to understand the multiple challenges that are impacting student success which create a large “middle” cohort of students that are stuck in transition within academic programs. Using the lens of the sociocultural influences on student engagement framework, we conducted a thematic analysis of the two surveys and focus group interviews. Preliminary findings indicate that living conditions, choice of program, access to resources, motivation, institutional support, infrastructure, and pedagogical practices impact student engagement and, thus, student success. It is envisaged that the findings from this project will assist the university in being better prepared to enable student success.Keywords: social and academic integration, socio-cultural influences, student engagement, student success
Procedia PDF Downloads 732940 The Effects of COVID-19 on the Energy Trends and Production Capacity of Turkish Cement Industry
Authors: Adem Atmaca
Abstract:
More than 500 million COVID-19 cases were noted in February 2022 in Turkey. The country is one of the most impacted countries all around the world with twenty million cases. The cement industry in Turkey ranks among the most energy-intensive sectors with huge production capacities among the biggest exporter countries. The purpose of this paper is to clarify the effects of the pandemic on the cement industry in Turkey by showing the changes in manufacturing capacities and export rates of all facilities in the country. The investigation has revealed that the epidemic has slight effects on the factory production capacities and export rates. Even though the capacity usage rates of the factories decreased dramatically in 2019, it seems that Turkish cement companies turned the pandemic to their advantage by increasing their production capacities, capacity usage rates and export rates gradually by reaching new markets during the pandemic.Keywords: energy, emissions, cement industry, COVID-19
Procedia PDF Downloads 1202939 A Study of Erosion and Sedimentation Rates Based on Two Different Seasons Using CS-137 As A Tracer in the Sembrong Catchment, Malaysia
Authors: Jalal Sharib@Sarip, Dainee nor Fardzila Ahmad Tugi, Mohd Tarmizi Ishak, Mohd Izwan Abdul Adziz
Abstract:
This research paper aims to determine the rate of soil erosion and sedimentation by using Cesium-137,137Cs as a medium-term tracer in the Sembrong catchment, Malaysia, over two different study seasons. The results of the analysis show that rates of soil erosion and sedimentation for both seasons were variable. This can be clearly seen where the dry season only gives the value of the rate of soil erosion. Meanwhile, the wet season has given both soil erosion and sedimentation rate values. The dry season had rates of soil erosion between 5.09 t/ha/y to 51.03 t/ha/y. The wet season had soil erosion and sedimentation rates between 8.02 t/ha/y to 39.78 t/ha/y and -4.81 t/ha/y to - 50.81 t/ha/y, each, respectively. rubber and oil palm plantations referring to Station 17 and station 4/6, located near Semberong Lake and Sembrong River, had the highest rates of soil erosion and sedimentation at 51.03 t/ha/y and -50.81 t/ha/y, respectively. Various factors must also be taken into account, such as soil types, the total volume of rainfall received for both seasons, as well as differences in land use at the study stations. In conclusion, 137Cs as a medium-term tracer was successfully used to determine rates of soil erosion and sedimentation in two different seasons for the Sembrong catchment area. The data on soil erosion and sedimentation rates for this study will be very useful for present, and future land and water management in the Sembrong catchment area and may be compared with other similar catchments in Malaysia.Keywords: soil erosion, sedimentation, cesium-137, catchment management
Procedia PDF Downloads 1382938 The Effects of Interest Rates on Islamic Banks in a Dual Banking System: Empirical Evidence from Saudi Arabia
Authors: Mouldi Djelassi, Jamel Boukhatem
Abstract:
Background: A relation has been established between Islamic banks' activities and interest rates. The aim of this study was to explore the impact of interest rates on the deposits and loans held by Islamic and conventional banks in Saudi Arabia. Methods: A time series data was performed over the period 2008Q1-2020Q2 on eight conventional banks and four Islamic banks. The impacts of interest rate shocks on deposits and loans were identified through panel vector autoregressive models. Results: Impulse response function analysis showed that increasing interest rates reduce loans and conventional deposits. For Islamic banks, deposits are more affected by interest rates than lending. Variance decomposition analysis revealed that deposits contribute to 61% of the Islamic financing variation and only 25% of the conventional loans. Conclusion: Interest rates impacted Islamic banks especially through deposits, which is inconsistent with the theoretical framework. Islamic deposits played an important role in Islamic financing variation and may provide to be a channel for the transmission of the monetary policy in a dual banking system. Monetary policy in Saudi Arabia works in part through “credits” (conventional bank credits) as well as through “money” (conventional and Islamic bank deposits).Keywords: Islamic banking, interest rates, monetary policy transmission, panel VAR
Procedia PDF Downloads 110