Search results for: complex shaped part
12181 Complex Shaped Prepreg Part Drapability Using Vacuum Bagging
Authors: Saran Toure
Abstract:
Complex shaped parts manufactured using out of autoclave prepreg vacuum bagging has a high quality finish. This is not only due to in the control of resin to fibre ratio in prepregs, but also to a reduction in fibre misalignment, slippage and stresses occurring within plies during compaction. In a bid to further reduce deformation modes and control failure modes, we carried experiments where, we introduced wetted fabrics within a prepreg plybook during compaction. Here are presented the results obtained from the vacuum bagging of a complex shaped part. The shape is that of a turbine fan blade with smooth curves all throughout ending with sharp edged angles. The quality of the final part made from this blade is compared to that of the same blade made from standard vacuum bagging process of prepregs, without introducing wetted fabrics.Keywords: complex shaped part, prepregs, drapability, vacuum bagging
Procedia PDF Downloads 36512180 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data
Authors: Salihah Alghamdi, Surajit Ray
Abstract:
Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray
Procedia PDF Downloads 14012179 Numerical Simulation on Two Components Particles Flow in Fluidized Bed
Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi
Abstract:
Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow
Procedia PDF Downloads 32612178 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions
Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti
Abstract:
Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing
Procedia PDF Downloads 35012177 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 21012176 Numerical Simulation of External Flow Around D-Shaped Cylinders
Authors: Ouldouz Nourani Zonouz, Mehdi Salmanpour
Abstract:
Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases.Keywords: D-shaped, CFD, external flow, low Reynolds number, square cylinder
Procedia PDF Downloads 46012175 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring
Authors: Aftab Khan, Ashfaq Khan
Abstract:
The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures
Procedia PDF Downloads 44312174 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation
Authors: Fangyuan Shao, Wei Liu, Deli Gao
Abstract:
Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe
Procedia PDF Downloads 20312173 Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects
Authors: Ryan D. Hoult
Abstract:
The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading.Keywords: shear lag, walls, U-shaped, moment-curvature
Procedia PDF Downloads 21112172 The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails
Abstract:
The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction.Keywords: cyclic polypeptides, α-amino acid N-carboxyanhydrides, N-heterocyclic carbene, ring-opening polymerization, tadpole-shaped
Procedia PDF Downloads 20512171 Chaos in a Stadium-Shaped 2-D Quantum Dot
Authors: Roger Yu
Abstract:
A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated.Keywords: quantum dot, chaos, numerical method, eigenvalues
Procedia PDF Downloads 11712170 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement
Authors: Arash Mir Abdolah Lavasani, M. Ebrahimisabet
Abstract:
In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.Keywords: cam shaped, tandem, numerical, drag coefficient, turbulent
Procedia PDF Downloads 46312169 The Relevance of the U-Shaped Learning Model to the Acquisition of the Difference between C'est and Il Est in the English Learners of French Context
Authors: Pooja Booluck
Abstract:
A U-shaped learning curve entails a three-step process: a good performance followed by a bad performance followed by a good performance again. U-shaped curves have been observed not only in language acquisition but also in various fields such as temperature face recognition object permanence to name a few. Building on previous studies of the curve child language acquisition and Second Language Acquisition this empirical study seeks to investigate the relevance of the U-shaped learning model to the acquisition of the difference between cest and il est in the English Learners of French context. The present study was developed to assess whether older learners of French in the ELF context follow the same acquisition pattern. The empirical study was conducted on 15 English learners of French which lasted six weeks. Compositions and questionnaires were collected from each subject at three time intervals (after one week after three weeks after six weeks) after which students work were graded as being either correct or incorrect. The data indicates that there is evidence of a U-shaped learning curve in the acquisition of cest and il est and students did follow the same acquisition pattern as children in regards to rote-learned terms and subject clitics. This paper also discusses the need to introduce modules on U-shaped learning curve in teaching curriculum as many teachers are unaware of the trajectory learners undertake while acquiring core components in grammar. In addition this study also addresses the need to conduct more research on the acquisition of rote-learned terms and subject clitics in SLA.Keywords: child language acquisition, rote-learning, subject clitics, u-shaped learning model
Procedia PDF Downloads 29312168 Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications
Authors: M. Naimur Rahman, Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran
Abstract:
This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band.Keywords: Ku-band antenna, microstrip antenna, psi-shaped antenna, satellite applications
Procedia PDF Downloads 30912167 Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges
Authors: Murtala Gada Abubakar, Aliyu T. Umar
Abstract:
A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex.Keywords: basement complex, hydrological processes, Sokoto Basin, water security
Procedia PDF Downloads 31912166 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis
Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng
Abstract:
Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM
Procedia PDF Downloads 36112165 Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes
Authors: Wichan Lertlop
Abstract:
This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high.Keywords: aeration, dissolve oxygen, different shapes
Procedia PDF Downloads 31012164 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting
Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach
Abstract:
A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST
Procedia PDF Downloads 48612163 English Complex Aspectuality: A Functional Approach
Authors: Cunyu Zhang
Abstract:
Based on Systemic Functional Linguistics, this paper aims to explore the complex aspectuality system of English. This study shows that the complex aspectuality is classified into complex viewpoint aspect which refers to the homogeneous or heterogeneous ways continuously viewing on the same situation by the speaker and complex situation aspect which is the combined configuration of the internal time schemata of situation. Through viewpoint shifting and repeating, the complex viewpoint aspect is formed in two combination ways. Complex situation aspect is combined by the way of hypotactic verbal complex and the limitation of participant and circumstance in a clause.Keywords: aspect series, complex situation aspect, complex viewpoint aspect, systemic functional linguistics
Procedia PDF Downloads 35612162 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment
Authors: M. Riaz, Inamur Rehman, Abhishek Sharma
Abstract:
The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped
Procedia PDF Downloads 45912161 Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow
Authors: Sayed Ahmed El Sayed, Osama M. Mesalhy, Mohamed A. Abdelatief
Abstract:
A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.Keywords: longitudinal fins, skin friction, flow characteristics, FLUENT, wing-shaped tubes
Procedia PDF Downloads 53912160 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle
Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief
Abstract:
An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD
Procedia PDF Downloads 37612159 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria
Authors: Collins C. Chiemeke, A. Onugba, P. Sule
Abstract:
High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.Keywords: basement complex, batholith, high resolution, lithologies, seismic reflection
Procedia PDF Downloads 29612158 Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions
Authors: Manojkumar Sabanayagam
Abstract:
The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis.Keywords: Reimann hypothesis, critical strip, complex plane, transformation zone
Procedia PDF Downloads 20812157 Propagation of W Shaped of Solitons in Fiber Bragg Gratings
Authors: Mezghiche Kamel
Abstract:
We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties.Keywords: fiber bragg grating, nonlinear-coupled mode equations, w shaped of solitons, PNLS
Procedia PDF Downloads 76912156 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method
Authors: A. Tavangari, N. Salehzadeh
Abstract:
In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny-Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.Keywords: penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method
Procedia PDF Downloads 36612155 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications
Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh
Abstract:
Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.Keywords: peatrics, tracheostomy, ICU, tracheostoma
Procedia PDF Downloads 26412154 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 29112153 Fabric Printing Design: An Inspiration from Thai Kites
Authors: Suwit Sadsunk
Abstract:
This research paper was aimed to study different motifs found on Thai kites in order to be create new fabric printing designs. The objectives of the study were (1) to examine different motifs of Thai kites; and (2) to create appropriate printing designs for fabric based on an examination of motifs of Thai kites from primary and secondary sources. The study found that designs, motifs and colors found on Thai kites were various based on individual artisans’ imagination in each period. From the historical review, there have been 4 kinds of Thai kites namely I-Loom Kite, Pak Pao Kite, Chula Kite and Dui Dui Kite. Nowadays, the kite designs have been developed to be more various by shape and color such as snake- shaped kite, owl-shaped kite and peacock-shaped kite.Keywords: Thai kites, fabric printing design
Procedia PDF Downloads 32512152 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior
Authors: Shinji Kajiwara
Abstract:
The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.Keywords: hydraulics, pipe flow, numerical simulation, flow visualization, check ball, L-shaped pipe
Procedia PDF Downloads 300