Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 91

Search results for: trading company

91 Collaborative Business Strategy of PTT Energy Trading Co. Ltd. for LNG form of Coal Bed Methane in B2B Transaction to Japanese Shareholder, Especially to Electricity and Power Supply Companies

Authors: Shabrina Pritta Radyanti, Harimukti Wandebori

Abstract:

A research study was conducted with an objective to propose a collaborative business strategy of a oil and gas trading company, representing PPT Energy Trading Co., Ltd., with its shareholder, especially electricity and power supply companies for LNG Form of Coal Bed Methane in B2B Transaction. Collaborative business strategy is a strategy to collaborate with other organizations due to have future benefits in both parties, or achieve the business objective through the collaboration of business, its strategy and partners. A structured interview was established to collect the required primary data from the company. Not only interview, but also company’s business plan and annual report were collected and analyzed for the company’s current condition. As the result, this research shows a recommendation to propose a new collaborative strategy with limiting its target market, diversifying product, conducting new business model, and considering other stakeholders.

Keywords: collaborative business strategy, trading company, LNG, coal bed methane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
90 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
89 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
88 Futures Trading: Design of a Strategy

Authors: Jan Zeman

Abstract:

The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.

Keywords: futures trading, decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
87 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
86 Optimal Generation Expansion Planning Strategy with Carbon Trading

Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai

Abstract:

Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.

Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
85 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
84 The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading

Authors: Abdalla Kablan, Joseph Falzon

Abstract:

This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.

Keywords: Financial decision making, High frequency trading, Adaprive neuro-fuzzy systems, moving average strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
83 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
82 Technical Trading Rules in Emerging Stock Markets

Authors: Stefaan Pauwels, Koen Inghelbrecht, Dries Heyman, Pieter Marius

Abstract:

Literature reveals that many investors rely on technical trading rules when making investment decisions. If stock markets are efficient, one cannot achieve superior results by using these trading rules. However, if market inefficiencies are present, profitable opportunities may arise. The aim of this study is to investigate the effectiveness of technical trading rules in 34 emerging stock markets. The performance of the rules is evaluated by utilizing White-s Reality Check and the Superior Predictive Ability test of Hansen, along with an adjustment for transaction costs. These tests are able to evaluate whether the best model performs better than a buy-and-hold benchmark. Further, they provide an answer to data snooping problems, which is essential to obtain unbiased outcomes. Based on our results we conclude that technical trading rules are not able to outperform a naïve buy-and-hold benchmark on a consistent basis. However, we do find significant trading rule profits in 4 of the 34 investigated markets. We also present evidence that technical analysis is more profitable in crisis situations. Nevertheless, this result is relatively weak.

Keywords: technical trading rules, Reality Check, Superior Predictive Ability, emerging stock markets, data snooping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
81 Downtrend Algorithm and Hedging Strategy in Futures Market

Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis

Abstract:

The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.

Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
80 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

Authors: Hiroki Satou, Kayoko Yamamoto

Abstract:

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
79 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani

Abstract:

Waste Load Allocation (WLA) strategies usually intend to find economic policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: Waste load allocation (WLA), Water quality trading (WQT), Total maximum daily loads (TMDLs), Haraz River, Multi objective particle swarm optimization (MOPSO), Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
78 The Study of Cost Accounting in S Company Based On TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost.Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost.The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: Third-party logistics enterprises, TDABC, cost management, S company.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
77 Measuring the CSR Company-Stakeholder Fit

Authors: Armando Calabrese, Roberta Costa, Tamara Menichini, Francesco Rosati

Abstract:

As a company competitiveness depends more and more on the relationship with its stakeholders, the topic of companystakeholder fit is becoming increasingly important. This fit affects the extent to which a stakeholder perceives CSR company commitment, values and behaviors and, therefore, stakeholder identification in a company and his/her loyalty to it. Consequently, it is important to measure the alignment or the gap between stakeholder CSR demands, values, preferences and perceptions, and the company CSR disclosed commitment, values and policies. In this paper, in order to assess the company-stakeholder fit about corporate responsibility, an innovative CSR fit positioning matrix is proposed. This matrix is based on the measurement of a company CSR disclosed commitment and stakeholder perceived and required commitment. The matrix is part of a more complex methodology based on Global Reporting Initiative (GRI) indicators, content analysis and stakeholder questionnaires. This methodology provides appropriate indications for helping companies to achieve CSR company-stakeholder fit, by leveraging both CSR commitment and communication. Moreover, it could be used by top management for comparing different companies and stakeholders, and for planning specific CSR strategies, policies and activities.

Keywords: Company-Stakeholder fit, Corporate Social Responsibility (CSR), CSR Positioning Matrix, Global Reporting Initiative (GRI), Stakeholder Orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
76 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company

Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour

Abstract:

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Keywords: GeG Company, maintainability, maintenance costs, reliability-center-maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
75 Measuring Relative Efficiency of Korean Construction Company using DEA/Window

Authors: Jung-Lo Park, Sung-Sik Kim, Sun-Young Choi, Ju-Hyung Kim, Jae-Jun Kim

Abstract:

Sub-prime mortgage crisis which began in the US is regarded as the most economic crisis since the Great Depression in the early 20th century. Especially, hidden problems on efficient operation of a business were disclosed at a time and many financial institutions went bankrupt and filed for court receivership. The collapses of physical market lead to bankruptcy of manufacturing and construction businesses. This study is to analyze dynamic efficiency of construction businesses during the five years at the turn of the global financial crisis. By discovering the trend and stability of efficiency of a construction business, this study-s objective is to improve management efficiency of a construction business in the ever-changing construction market. Variables were selected by analyzing corporate information on top 20 construction businesses in Korea and analyzed for static efficiency in 2008 and dynamic efficiency between 2006 and 2010. Unlike other studies, this study succeeded in deducing efficiency trend and stability of a construction business for five years by using the DEA/Window model. Using the analysis result, efficient and inefficient companies could be figured out. In addition, relative efficiency among DMU was measured by comparing the relationship between input and output variables of construction businesses. This study can be used as a literature to improve management efficiency for companies with low efficiency based on efficiency analysis of construction businesses.

Keywords: Construction Company, DEA, DEA/Window, Efficiency Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
74 Evaluation of Top-down and Bottom-up Leadership Development Programs in a Finnish Company

Authors: Kati Skarp, Keijo Varis, Juha Kettunen

Abstract:

The purpose of this paper is to examine and evaluate the top-down and bottom-up leadership development programs focused on human capital that improve the performance of a company. This study reports on the external top-down leadership development program supported by a consulting company and the internal participatory action research of the bottom-up program. The sickness rate and the lost time incident failure rate decreased and the ideas produced for cost savings improved, leading to increased earnings during the top-down program. The estimated cost savings potential of the bottom-up program was 3.8 million euro based on the cost savings of meeting habits, maintenance practices and the way of working in production. The results of this study are useful for those who plan and evaluate leadership development and human capital productivity consultation programs to improve the performance of a company.

Keywords: Leadership, development, human resources, company, indicators, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
73 Investigation of Oil inside the Wells in REY Area in Tehran Oil Refining Company in Iran

Authors: Mohammad Ali Hosseinpour, Hossein Ghoreishi, Saeid Gitipour, Mona Jafarnejad

Abstract:

REY area has been located in Tehran Province and several archaeological ruins of this area indicate that the settlement in this area has been started since several thousand years ago. In this paper, the main investigation items consist of analysis of oil components and groundwater quality inside the wells. By finding the contents of oil in the well, it is possible to find out the pollution source by comparing the oil contents of well with other oil products that are used inside and outside of the oil farm. Investigation items consist of analysis of BTEX (Benzene, Toluene, Ethyl-benzene, Xylene), Gas chromatographic distillation characteristics, Water content, Density, Sulfur content, Lead content, Atmospheric distillation, MTBE(Methyl tertiary butyl ether). Analysis of polluting oil components showed that except MW(Monitoring Well)10 and MW 15 that oil with slightly heavy components was detected in them; with a high possibility the polluting oil is light oil.

Keywords: BTEX, Oil Component, REY Area, Tehran Oil Refining Company (T.O.R.C) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
72 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
71 Critical Factors to Company Success in the Construction Industry

Authors: G. Arslan, S. Kivrak

Abstract:

Achieving success is a highly critical issue for the companies to survive in a competitive business environment. The construction industry is also an area where there is strong competition due to a large number of construction contractors. There have been many factors such as qualified employees, quality workmanship and financial management that can lead to company success in the construction industry. The aim of this study was to investigate the critical factors leading to construction company success. Within this context, a survey was carried out among 40 Turkish construction companies which are located in the Northwest region of Turkey. In this survey, top-level managers and owners of the companies were interviewed. The interviews took place over a five month period between January and May 2007. Finally, the ranking of the critical success factors has been determined by using the Simple Multi Attribute Rating Technique (SMART). Based on the results, business management, financial conditions and owner/manager characteristics were determined as the most important factors to company success.

Keywords: Company success, construction, organization, success factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
70 Marketing Strategy Analysis of Boon Rawd Brewery Company

Authors: Sinee Sankrusme

Abstract:

Boon Rawd Brewery is a beer company based in Thailand that has an exemplary image, both as a good employer and a well-managed company with a strong record of social responsibility. The most famous of the company’s products is Singha beer. To study the company’s marketing strategy, a case study analysis was conducted together with qualitative research methods. The study analyzed the marketing strategy of Boon Rawd Brewery before the liberalization of the liquor market in 2000. The company’s marketing strategies consisted of the following: product line strategy, product development strategy, block channel strategy, media strategy, trade strategy, and consumer incentive strategy. Additionally, the company employed marketing mix strategy based on the 4Ps: product, price, promotion and place (of distribution).

Keywords: Beer, Boon Rawd Brewery Company, Marketing Strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
69 Marketing Strategy Analysis of Thai Asia Pacific Brewery Company

Authors: Sinee Sankrusme

Abstract:

The study was a case study analysis about Thai Asia Pacific Brewery Company. The purpose was to analyze the company’s marketing objective, marketing strategy at company level, and marketing mix before liquor liberalization in 2000. Methods used in this study were qualitative and descriptive research approach which demonstrated the following results of the study demonstrated as follows: (1) Marketing objective was to increase market share of Heineken and Amtel, (2) the company’s marketing strategies were brand building strategy and distribution strategy. Additionally, the company also conducted marketing mix strategy as follows. Product strategy: The company added more beer brands namely Amstel and Tiger to provide additional choice to consumers, product and marketing research, and product development. Price strategy: the company had taken the following into consideration: cost, competitor, market, economic situation and tax. Promotion strategy: the company conducted sales promotion and advertising. Distribution strategy: the company extended channels its channels of distribution into food shops, pubs and various entertainment places. This strategy benefited interested persons and people who were engaged in the beer business.

Keywords: Marketing Strategy, Beer, Thai Asia Pacific Brewery Company.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
68 The Role of Business Process Management in Driving Digital Transformation: Insurance Company Case Study

Authors: Dalia Suša Vugec, Ana-Marija Stjepić, Darija Ivandić Vidović

Abstract:

Digital transformation is one of the latest trends on the global market. In order to maintain the competitive advantage and sustainability, increasing number of organizations are conducting digital transformation processes. Those organizations are changing their business processes and creating new business models with the help of digital technologies. In that sense, one should also observe the role of business process management (BPM) and its maturity in driving digital transformation. Therefore, the goal of this paper is to investigate the role of BPM in digital transformation process within one organization. Since experiences from practice show that organizations from financial sector could be observed as leaders in digital transformation, an insurance company has been selected to participate in the study. That company has been selected due to the high level of its BPM maturity and the fact that it has previously been through a digital transformation process. In order to fulfill the goals of the paper, several interviews, as well as questionnaires, have been conducted within the selected company. The results are presented in a form of a case study. Results indicate that digital transformation process within the observed company has been successful, with special focus on the development of digital strategy, BPM and change management. The role of BPM in the digital transformation of the observed company is further discussed in the paper.

Keywords: Business process management, case study, Croatia, digital transformation, insurance company.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
67 Evaluating Efficiency of Nina Distribution Company Using Window Data Envelopment Analysis and Malmquist Index

Authors: Hossein Taherian Far, Ali Bazaee

Abstract:

Achieving continuous sustained economic growth and following economic development can be the target for all countries which are looking for it. In this regard, distribution industry plays an important role in growth and development of any nation. So, estimating the efficiency and productivity of the so called industry and identifying factors influencing it, is very necessary. The objective of the present study is to measure the efficiency and productivity of seven branches of Nina Distribution Company using window data envelopment analysis and Malmquist productivity index from spring 2013 to summer 2015. In this study, using criteria of fixed assets, payroll personnel, operating costs and duration of collection of receivables were selected as inputs and people and net sales, gross profit and percentage of coverage to customers were selected as outputs. Then, the process of performance window data envelopment analysis was driven and process efficiency has been measured using Malmquist index. The results indicate that the average technical efficiency of window Data Envelopment Analysis (DEA) model and fluctuating trend is sustainable. But the average management efficiency in window DEA model is related with negative growth (decline) of about 13%. The mean scale efficiency in all windows, except in the second one which is faced with 8%, shows growth of 18% compared to the first window. On the other hand, the mean change in total factor productivity in all branches of the industry shows average negative growth (decrease) of 12% which are the result of a negative change in technology.

Keywords: Nina Distribution Company branches, window data envelopment analysis, Malmquist productivity index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
66 Critical Issues of Inclusion of Aviation in EU Emissions Trading System

Authors: Jakub Hospodka

Abstract:

This paper dissertates about issues which may occur after next year will be major part of civil aviation in EU included into system of Emission trading. This system should help to fight against global warming and to fulfill Kyoto Protocol commitments of European countries. Main issues mentioned in this paper are connected with problem of radiative forcing from emissions and lack of their monitoring and charging in EU legislative. There are mentioned main differences between industrial emissions and emissions form aviation with notification about possible negative impacts of neglecting these differences. Special attention is dedicated to risk of possible reverse effect of inclusion aviation in EU ETS, which may theoretically occur.

Keywords: EU ETS, radiative forcing, aviation, emissiontrading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
65 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
64 Factors Affecting Employee Performance: A Case Study in Marketing and Trading Directorate, Pertamina Ltd.

Authors: Saptiadi Nugroho, A. Nur Muhamad Afif

Abstract:

Understanding factors that influence employee performance is very important. By finding the significant factors, organization could intervene to improve the employee performance that simultaneously will affect organization itself. In this research, four aspects consist of PCCD training, education level, corrective action, and work location were tested to identify their influence on employee performance. By using correlation analysis and T-Test, it was found that employee performance significantly influenced by PCCD training, work location, and corrective action. Meanwhile the education level did not influence employee performance.

Keywords: Training, employee development, performance management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
63 Impact of Regulation on Trading in Financial Derivatives in Europe

Authors: H. Florianová, J. Nešleha

Abstract:

Financial derivatives are considered to be risky investment instruments which could possibly bring another financial crisis. As prevention, European Union and its member states have released new legal acts adjusting this area of law in recent years. There have been several cases in history of capital markets worldwide where it was shown that legislature may affect behavior of subjects on capital markets. In our paper we analyze main events on selected European stock exchanges in order to apply them on three chosen markets - Czech capital market represented by Prague Stock Exchange, German capital market represented by Deutsche Börse and Polish capital market represented by Warsaw Stock Exchange. We follow time series of development of the sum of listed derivatives on these three stock exchanges in order to evaluate popularity of those exchanges. Afterwards we compare newly listed derivatives in relation to the speed of development of these exchanges. We also make a comparison between trends in derivatives and shares development. We explain how a legal regulation may affect situation on capital markets. If the regulation is too strict, potential investors or traders are not willing to undertake it and move to other markets. On the other hand, if the regulation is too vague, trading scandals occur and the market is not reliable from the prospect of potential investors or issuers. We see that making the regulation stricter usually discourages subjects to stay on the market immediately although making the regulation vaguer to interest more subjects is usually much slower process.

Keywords: Capital markets, financial derivatives, investors' behavior, regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
62 A New Measure of Herding Behavior: Derivation and Implications

Authors: Amina Amirat, Abdelfettah Bouri

Abstract:

If price and quantity are the fundamental building blocks of any theory of market interactions, the importance of trading volume in understanding the behavior of financial markets is clear. However, while many economic models of financial markets have been developed to explain the behavior of prices -predictability, variability, and information content- far less attention has been devoted to explaining the behavior of trading volume. In this article, we hope to expand our understanding of trading volume by developing a new measure of herding behavior based on a cross sectional dispersion of volumes betas. We apply our measure to the Toronto stock exchange using monthly data from January 2000 to December 2002. Our findings show that the herd phenomenon consists of three essential components: stationary herding, intentional herding and the feedback herding.

Keywords: Herding behavior, market return, trading volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF