Search results for: ranked search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 854

Search results for: ranked search

854 Estimating the Population Mean by Using Stratified Double Extreme Ranked Set Sample

Authors: Mahmoud I. Syam, Kamarulzaman Ibrahim, Amer I. Al-Omari

Abstract:

Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.

Keywords: Double extreme ranked set sampling, Extreme ranked set sampling, Ranked set sampling, Stratified double extreme ranked set sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
853 Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean

Authors: Mahmoud I. Syam

Abstract:

Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.

Keywords: Efficiency, double ranked set sampling, median ranked set sampling, ranked set sampling, stratified.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
852 Ratio Type Estimators of the Population Mean Based on Ranked Set Sampling

Authors: Said Ali Al-Hadhrami

Abstract:

Ranked set sampling (RSS) was first suggested to increase the efficiency of the population mean. It has been shown that this method is highly beneficial to the estimation based on simple random sampling (SRS). There has been considerable development and many modifications were done on this method. When a concomitant variable is available, ratio estimation based on ranked set sampling was proposed. This ratio estimator is more efficient than that based on SRS. In this paper some ratio type estimators of the population mean based on RSS are suggested. These estimators are found to be more efficient than the estimators of similar form using simple random sample.

Keywords: Bias, Efficiency, Ranked Set Sampling, Ratio Type Estimator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
851 Matching Current Search with Future Postings

Authors: Kim Nee Goh, Viknesh Kumar Naleyah

Abstract:

Online trading is an alternative to conventional shopping method. People trade goods which are new or pre-owned before. However, there are times when a user is not able to search the items wanted online. This is because the items may not be posted as yet, thus ending the search. Conventional search mechanism only works by searching and matching search criteria (requirement) with data available in a particular database. This research aims to match current search requirements with future postings. This would involve the time factor in the conventional search method. A Car Matching Alert System (CMAS) prototype was developed to test the matching algorithm. When a buyer-s search returns no result, the system saves the search and the buyer will be alerted if there is a match found based on future postings. The algorithm developed is useful and as it can be applied in other search context.

Keywords: Matching algorithm, online trading, search, future postings, car matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
850 New Enhanced Hexagon-Based Search Using Point-Oriented Inner Search for Fast Block Motion Estimation

Authors: Lai-Man Po, Chi-Wang Ting, Ka-Ho Ng

Abstract:

Recently, an enhanced hexagon-based search (EHS) algorithm was proposed to speedup the original hexagon-based search (HS) by exploiting the group-distortion information of some evaluated points. In this paper, a second version of the EHS is proposed with a new point-oriented inner search technique which can further speedup the HS in both large and small motion environments. Experimental results show that the enhanced hexagon-based search version-2 (EHS2) is faster than the HS up to 34% with negligible PSNR degradation.

Keywords: Inner search, fast motion estimation, block-matching, hexagon search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
849 Searchable Encryption in Cloud Storage

Authors: Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: Fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
848 Personalization of Web Search Using Web Page Clustering Technique

Authors: Amol Bapuso Rajmane, Pradeep M. Patil, Prakash J. Kulkarni

Abstract:

The Information Retrieval community is facing the problem of effective representation of Web search results. When we organize web search results into clusters it becomes easy to the users to quickly browse through search results. The traditional search engines organize search results into clusters for ambiguous queries, representing each cluster for each meaning of the query. The clusters are obtained according to the topical similarity of the retrieved search results, but it is possible for results to be totally dissimilar and still correspond to the same meaning of the query. People search is also one of the most common tasks on the Web nowadays, but when a particular person’s name is queried the search engines return web pages which are related to different persons who have the same queried name. By placing the burden on the user of disambiguating and collecting pages relevant to a particular person, in this paper, we have developed an approach that clusters web pages based on the association of the web pages to the different people and clusters that are based on generic entity search.

Keywords: Entity resolution, information retrieval, graph based disambiguation, web people search, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
847 Retrieval of User Specific Images Using Semantic Signatures

Authors: K. Venkateswari, U. K. Balaji Saravanan, K. Thangaraj, K. V. Deepana

Abstract:

Image search engines rely on the surrounding textual keywords for the retrieval of images. It is a tedious work for the search engines like Google and Bing to interpret the user’s search intention and to provide the desired results. The recent researches also state that the Google image search engines do not work well on all the images. Consequently, this leads to the emergence of efficient image retrieval technique, which interprets the user’s search intention and shows the desired results. In order to accomplish this task, an efficient image re-ranking framework is required. Sequentially, to provide best image retrieval, the new image re-ranking framework is experimented in this paper. The implemented new image re-ranking framework provides best image retrieval from the image dataset by making use of re-ranking of retrieved images that is based on the user’s desired images. This is experimented in two sections. One is offline section and other is online section. In offline section, the reranking framework studies differently (reference classes or Semantic Spaces) for diverse user query keywords. The semantic signatures get generated by combining the textual and visual features of the images. In the online section, images are re-ranked by comparing the semantic signatures that are obtained from the reference classes with the user specified image query keywords. This re-ranking methodology will increases the retrieval image efficiency and the result will be effective to the user.

Keywords: CBIR, Image Re-ranking, Image Retrieval, Semantic Signature, Semantic Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
846 In Search of Excellence – Google vs Baidu

Authors: Linda, Sau-ling LAI

Abstract:

This paper compares the search engine marketing strategies adopted in China and the Western countries through two illustrative cases, namely, Google and Baidu. Marketers in the West use search engine optimization (SEO) to rank their sites higher for queries in Google. Baidu, however, offers paid search placement, or the selling of engine results for particular keywords to the higher bidders. Whereas Google has been providing innovative services ranging from Google Map to Google Blog, Baidu remains focused on search services – the one that it does best. The challenges and opportunities of the Chinese Internet market offered to global entrepreneurs are also discussed in the paper

Keywords: Search Engine, Web analytics, Google, Baidu

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
845 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC

Authors: T. Song, T. Shimamoto

Abstract:

In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.

Keywords: Motion estimation, VLSI, image processing, search patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
844 A Novel Approach to Improve Users Search Goal in Web Usage Mining

Authors: R. Lokeshkumar, P. Sengottuvelan

Abstract:

Web mining is to discover and extract useful Information. Different users may have different search goals when they search by giving queries and submitting it to a search engine. The inference and analysis of user search goals can be very useful for providing an experience result for a user search query. In this project, we propose a novel approach to infer user search goals by analyzing search web logs. First, we propose a novel approach to infer user search goals by analyzing search engine query logs, the feedback sessions are constructed from user click-through logs and it efficiently reflect the information needed for users. Second we propose a preprocessing technique to clean the unnecessary data’s from web log file (feedback session). Third we propose a technique to generate pseudo-documents to representation of feedback sessions for clustering. Finally we implement k-medoids clustering algorithm to discover different user search goals and to provide a more optimal result for a search query based on feedback sessions for the user.

Keywords: Data Preprocessing, Session Identification, Web log mining, Web Personalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
843 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: Context-sensitive search, image search, media search, similarity ranking, similarity search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
842 Joint Adaptive Block Matching Search (JABMS) Algorithm

Authors: V.K.Ananthashayana, Pushpa.M.K

Abstract:

In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.

Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
841 EnArgus: A Knowledge-Based Search Application for Energy Research Projects

Authors: Frederike Ohrem, Lukas Sikorski, Bastian Haarmann

Abstract:

Often the users of a semantic search application are facing the problem that they do not find appropriate terms for their search. This holds especially if the data to be searched is from a technical field in which the user does not have expertise. In order to support the user finding the results he seeks, we developed a domain-specific ontology and implemented it into a search application. The ontology serves as a knowledge base, suggesting technical terms to the user which he can add to his query. In this paper, we present the search application and the underlying ontology as well as the project EnArgus in which the application was developed.

Keywords: Information system, knowledge representation, ontology, semantic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
840 On the Comparison of Several Goodness of Fit tests under Simple Random Sampling and Ranked Set Sampling

Authors: F. Azna A. Shahabuddin, Kamarulzaman Ibrahim, Abdul Aziz Jemain

Abstract:

Many works have been carried out to compare the efficiency of several goodness of fit procedures for identifying whether or not a particular distribution could adequately explain a data set. In this paper a study is conducted to investigate the power of several goodness of fit tests such as Kolmogorov Smirnov (KS), Anderson-Darling(AD), Cramer- von- Mises (CV) and a proposed modification of Kolmogorov-Smirnov goodness of fit test which incorporates a variance stabilizing transformation (FKS). The performances of these selected tests are studied under simple random sampling (SRS) and Ranked Set Sampling (RSS). This study shows that, in general, the Anderson-Darling (AD) test performs better than other GOF tests. However, there are some cases where the proposed test can perform as equally good as the AD test.

Keywords: Empirical distribution function, goodness-of-fit, order statistics, ranked set sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
839 Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs

Authors: Zullina H. Shaari, Amzairi Amar, Abdul Mutalib Embong, Hezlina Hashim

Abstract:

University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.

Keywords: Science and technology programs, top-ranked universities, online brands, university websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
838 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
837 An Improved Fast Search Method Using Histogram Features for DNA Sequence Database

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.

Keywords: Fast search, DNA sequence, Histogram feature, Smith-Waterman algorithm, Local search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
836 High Speed Bitwise Search for Digital Forensic System

Authors: Hyungkeun Jee, Jooyoung Lee, Dowon Hong

Abstract:

The most common forensic activity is searching a hard disk for string of data. Nowadays, investigators and analysts are increasingly experiencing large, even terabyte sized data sets when conducting digital investigations. Therefore consecutive searching can take weeks to complete successfully. There are two primary search methods: index-based search and bitwise search. Index-based searching is very fast after the initial indexing but initial indexing takes a long time. In this paper, we discuss a high speed bitwise search model for large-scale digital forensic investigations. We used pattern matching board, which is generally used for network security, to search for string and complex regular expressions. Our results indicate that in many cases, the use of pattern matching board can substantially increase the performance of digital forensic search tools.

Keywords: Digital forensics, search, regular expression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
835 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation

Authors: Mario Kubek, Herwig Unger

Abstract:

Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.

Keywords: Search algorithm, centroid, query, keyword, cooccurrence, categorisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
834 Cross-Industry Innovations–Systematic Identification of Ideas for Radical Problem Solving

Authors: Niklas Echterhoff, Benjamin Amshoff, Jürgen Gausemeier

Abstract:

Creativity is often based on an unorthodox recombination of knowledge; in fact: 80% of all innovations use given knowledge and put it into a new combination. Cross-industry innovations follow this way of thinking and bring together problems and solution ideas from different industries. Therefore analogies and search strategies have to be developed. Taking this path, the questions where to search, what to search and how to search have to be answered. Afterwards, the gathered information can be used within a planned search process. Identified solution ideas have to be assessed and analyzed in detail for the success promising adaption planning.

Keywords: analogy building, cross-industry innovations, knowledge transfer, solution adaption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
833 On the Interactive Search with Web Documents

Authors: Mario Kubek, Herwig Unger

Abstract:

Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-ofthe- art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents.

Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
832 A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

Authors: Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, Antonios Thanailakis

Abstract:

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Keywords: Spiral Search, Motion Estimation, Embedded Systems, Low Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
831 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems

Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi

Abstract:

In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.

Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
830 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216
829 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: Process planning, scheduling, due-date assignment, genetic algorithm, random search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
828 Applying Tabu Search Algorithm in Public Transport: A Case Study for University Students in Mauritius

Authors: J. Cheeneebash, S. Jugee

Abstract:

In this paper, the Tabu search algorithm is used to solve a transportation problem which consists of determining the shortest routes with the appropriate vehicle capacity to facilitate the travel of the students attending the University of Mauritius. The aim of this work is to minimize the total cost of the distance travelled by the vehicles in serving all the customers. An initial solution is obtained by the TOUR algorithm which basically constructs a giant tour containing all the customers and partitions it in an optimal way so as to produce a set of feasible routes. The Tabu search algorithm then makes use of a search procedure, a swapping procedure and the intensification and diversification mechanism to find the best set of feasible routes.

Keywords: Tabu Search, Vehicle Routing, Transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
827 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
826 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
825 An Augmented Beam-search Based Algorithm for the Strip Packing Problem

Authors: Hakim Akeb, Mhand Hifi

Abstract:

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356