Search results for: protein interaction sites
1841 Predicting Protein Interaction Sites Based on a New Integrated Radial Basis Functional Neural Network
Authors: Xiaoli Shen, Yuehui Chen
Abstract:
Interactions among proteins are the basis of various life events. So, it is important to recognize and research protein interaction sites. A control set that contains 149 protein molecules were used here. Then 10 features were extracted and 4 sample sets that contained 9 sliding windows were made according to features. These 4 sample sets were calculated by Radial Basis Functional neutral networks which were optimized by Particle Swarm Optimization respectively. Then 4 groups of results were obtained. Finally, these 4 groups of results were integrated by decision fusion (DF) and Genetic Algorithm based Selected Ensemble (GASEN). A better accuracy was got by DF and GASEN. So, the integrated methods were proved to be effective.Keywords: protein interaction sites, features, sliding windows, radial basis functional neutral networks, genetic algorithm basedselected ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14201840 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure
Authors: Nazar Zaki, Safaai Deris, Hany Alashwal
Abstract:
Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.
Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361839 Detecting Community Structure in Amino Acid Interaction Networks
Authors: Omar GACI, Stefan BALEV, Antoine DUTOT
Abstract:
In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.
Keywords: interaction network, protein structure, community structure detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181838 Identification and Analysis of Binding Site Residues in Protein-Protein Complexes
Authors: M. Michael Gromiha, Kiyonobu Yokota, Kazuhiko Fukui
Abstract:
We have developed an energy based approach for identifying the binding sites and important residues for binding in protein-protein complexes. We found that the residues and residuepairs with charged and aromatic side chains are important for binding. These residues influence to form cation-¤Ç, electrostatic and aromatic interactions. Our observation has been verified with the experimental binding specificity of protein-protein complexes and found good agreement with experiments. The analysis on surrounding hydrophobicity reveals that the binding residues are less hydrophobic than non-binding sites, which suggests that the hydrophobic core are important for folding and stability whereas the surface seeking residues play a critical role in binding. Further, the propensity of residues in the binding sites of receptors and ligands, number of medium and long-range contacts, and influence of neighboring residues will be discussed.
Keywords: Protein-protein interactions, energy based approach;binding sites, propensity, long-range contacts, hydrophobicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971837 PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts
Authors: Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, Yasser M. Kadah
Abstract:
Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.Keywords: Link Grammar Parser, Interaction extraction, protein-protein interaction, Natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22531836 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
Authors: Omer Nebil Yaveroglu, Tolga Can
Abstract:
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121835 Selecting Negative Examples for Protein-Protein Interaction
Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae
Abstract:
Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.Keywords: Interaction graph, Negative training data, Protein-Protein interaction, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011834 Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins, in the Protein Interaction Network of Saccaromyces Cerevisiae
Authors: N. Tuncbag, T. Haliloglu, O. Keskin
Abstract:
Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17081833 A General Model for Amino Acid Interaction Networks
Authors: Omar Gaci, Stefan Balev
Abstract:
In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we identify a number of properties of these networks. We compare them to the general small-world network model and we analyze their hierarchical structure.Keywords: interaction network, protein structure, small-world network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771832 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex
Authors: S. Ashrafpour, T. Tohidi Moghadam, B. Ranjbar
Abstract:
Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 μM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme- AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.
Keywords: Nanocarrier, Nanoparticles, Surface Plasmon Resonance, Quenching Fluorescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25731831 Correspondence between Function and Interaction in Protein Interaction Network of Saccaromyces cerevisiae
Authors: Nurcan Tuncbag, Turkan Haliloglu, Ozlem Keskin
Abstract:
Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In the light of the clustering data, we have verified some interactions which were not identified as core interactions in DIP and also, we have characterized some functionally unknown proteins according to the interaction data and functional correlation. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins, also to predict new interactions and to characterize functions of unknown proteins.Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15891830 Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis
Authors: Shaila Ahmed, Raghu Prasad Rao Metpally, Sreedhara Sangadala, Boojala Vijay B Reddy
Abstract:
Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.Keywords: Transforming growth factor-beta, Bone morphogenic proteins, Noggin, LUDI de novo design method, CAP small molecules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191829 Molecular Evolutionary Analysis of Yeast Protein Interaction Network
Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka
Abstract:
To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631828 Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates
Authors: Yi-Zhong Weng, Chien-Kang Huang, Yu-Feng Huang, Chi-Yuan Yu, Darby Tien-Hao Chang
Abstract:
Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.Keywords: Protein structure, binding site, functional prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14601827 A Bayesian Kernel for the Prediction of Protein- Protein Interactions
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631826 Analysis of DNA-Recognizing Enzyme Interaction using Deaminated Lesions
Authors: Seung Pil Pack
Abstract:
Deaminated lesions were produced via nitrosative oxidation of natural nucleobases; uracul (Ura, U) from cytosine (Cyt, C), hypoxanthine (Hyp, H) from adenine (Ade, A), and xanthine (Xan, X) and oxanine (Oxa, O) from guanine (Gua, G). Such damaged nucleobases may induce mutagenic problems, so that much attentions and efforts have been poured on the revealing of their mechanisms in vivo or in vitro. In this study, we employed these deaminated lesions as useful probes for analysis of DNA-binding/recognizing proteins or enzymes. Since the pyrimidine lesions such as Hyp, Oxa and Xan are employed as analogues of guanine, their comparative uses are informative for analyzing the role of Gua in DNA sequence in DNA-protein interaction. Several DNA oligomers containing such Hyp, Oxa or Xan substituted for Gua were designed to reveal the molecular interaction between DNA and protein. From this approach, we have got useful information to understand the molecular mechanisms of the DNA-recognizing enzymes, which have not ever been observed using conventional DNA oligomer composed of just natural nucleobases.
Keywords: Deaminated lesion, DNA-protein interaction, DNA-recognizing enzymes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12921825 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881824 Critical Assessment of Scoring Schemes for Protein-Protein Docking Predictions
Authors: Dhananjay C. Joshi, Jung-Hsin Lin
Abstract:
Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtain by biophysical methods such as NMR and X-ray crystallography, and therefore protein-protein docking computation is considered an important approach for understanding protein-protein interactions. However, reliable prediction of the protein-protein complexes is still under way. In the past decades, several grid-based docking algorithms based on the Katchalski-Katzir scoring scheme were developed, e.g., FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, the success rate of protein-protein docking prediction is still far from ideal. In this work, we first propose a more practical measure for evaluating the success of protein-protein docking predictions,the rate of first success (RFS), which is similar to the concept of mean first passage time (MFPT). Accordingly, we have assessed the ZDOCK bound and unbound benchmarks 2.0 and 3.0. We also createda new benchmark set for protein-protein docking predictions, in which the complexes have experimentally determined binding affinity data. We performed free energy calculation based on the solution of non-linear Poisson-Boltzmann equation (nlPBE) to improve the binding mode prediction. We used the well-studied thebarnase-barstarsystem to validate the parameters for free energy calculations. Besides,thenlPBE-based free energy calculations were conducted for the badly predicted cases by ZDOCK and ZRANK. We found that direct molecular mechanics energetics cannot be used to discriminate the native binding pose from the decoys.Our results indicate that nlPBE-based calculations appeared to be one of the promising approaches for improving the success rate of binding pose predictions.
Keywords: protein-protein docking, protein-protein interaction, molecular mechanics energetics, Poisson-Boltzmann calculations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051823 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.
Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171822 A Novel Strategy for Oriented Protein Immobilization
Authors: Ching-Wei Tsai, Chih-I Liu, Ruoh-Chyu Ruaana
Abstract:
A new strategy for oriented immobilization of proteins was proposed. The strategy contains two steps. The first step is to search for a docking site away from the active site on the protein surface. The second step is trying to find a ligand that is able to grasp the targeted site of the protein. To avoid ligand binding to the active site of protein, the targeted docking site is selected to own opposite charges to those near the active site. To enhance the ligand-protein binding, both hydrophobic and electrostatic interactions need to be included. The targeted docking site should therefore contain hydrophobic amino acids. The ligand is then selected through the help of molecular docking simulations. The enzyme α-amylase derived from Aspergillus oryzae (TAKA) was taken as an example for oriented immobilization. The active site of TAKA is surrounded by negatively charged amino acids. All the possible hydrophobic sites on the surface of TAKA were evaluated by the free energy estimation through benzene docking. A hydrophobic site on the opposite side of TAKA-s active site was found to be positive in net charges. A possible ligand, 3,3-,4,4- – Biphenyltetra- carboxylic acid (BPTA), was found to catch TAKA by the designated docking site. Then, the BPTA molecules were grafted onto silica gels and measured the affinity of TAKA adsorption and the specific activity of thereby immobilized enzymes. It was found that TAKA had a dissociation constant as low as 7.0×10-6 M toward the ligand BPTA on silica gel. The increase in ionic strength has little effect on the adsorption of TAKA, which indicated the existence of hydrophobic interaction between ligands and proteins. The specific activity of the immobilized TAKA was compared with the randomly adsorbed TAKA on primary amine containing silica gel. It was found that the orderly immobilized TAKA owns a specific activity twice as high as the one randomly adsorbed by ionic interaction.
Keywords: Protein Oriented immobilization, Molecular docking, ligand design, surface modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671821 Characteristics of Intronic and Intergenic Human miRNAs and Features of their Interaction with mRNA
Authors: Assel S. Issabekova, Olga A. Berillo, Vladimir A. Khailenko, Shara A. Atambayeva, Mireille Regnier, Anatoly T. Ivachshenko
Abstract:
Regulatory relationships of 686 intronic miRNA and 784 intergenic miRNAs with mRNAs of 51 intronic miRNA coding genes were established. Interaction features of studied miRNAs with 5'UTR, CDS and 3'UTR of mRNA of each gene were revealed. Functional regions of mRNA were shown to be significantly heterogenous according to the number of binding sites of miRNA and to the location density of these sites.
Keywords: 5'UTR, 3'UTR, CDS, miRNA, target mRNA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17041820 Improving Protein-Protein Interaction Prediction by Using Encoding Strategies and Random Indices
Authors: Essam Al-Daoud
Abstract:
A New features are extracted and compared to improve the prediction of protein-protein interactions. The basic idea is to select and use the best set of features from the Tensor matrices that are produced by the frequency vectors of the protein sequences. Three set of features are compared, the first set is based on the indices that are the most common in the interacting proteins, the second set is based on the indices that tend to be common in the interacting and non-interacting proteins, and the third set is constructed by using random indices. Moreover, three encoding strategies are compared; that are based on the amino asides polarity, structure, and chemical properties. The experimental results indicate that the highest accuracy can be obtained by using random indices with chemical properties encoding strategy and support vector machine.Keywords: protein-protein interactions, random indices, encoding strategies, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661819 Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks
Authors: Zelmina Lubovac, Björn Olsson, Jonas Gamalielsson
Abstract:
This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.Keywords: Modules, systems biology, protein interactionnetworks, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061818 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface
Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra
Abstract:
Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.
Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24881817 Effect of Drought Stress and Selenium Spraying on Superoxide Dismotase Activity of Winter Rapeseed (Brassica napus L.) Cultivars
Authors: A.R. Pazoki, A. H. Shirani Rad, D. Habibi, F. Paknejad, S. Kobraee, N. Hadayat
Abstract:
In the other to Study of drought stress and Selenium spraying effect on superoxide dismotase (SOD) activity of rapeseed (Brassica napus L.) cultivars in Shahr-e-Rey region, an experiment carried out in Split factorial design in the basis of randomized complete blocks with 4 replications in 2006. Irrigation in two levels: Normal irrigation and irrigation with drought stress when the soil electrical conductivity reached to 60 as main factor and rapeseed cultivars in 3 levels Zarfam, Okapi, Opera and selenium spraying at the beginning of flowering stage in 3 levels: 0, 16 and 21 g/ha as sub factor. The results showed that the simple and interaction effect of irrigation, selenium and cultivars on SOD activity had significant difference. In this case Zarfam cultivar with 2010 u.mg-1 protein and Opera with 1454 u.mg-1 protein produced maximum and minimum amounts of SOD activitiy. Interaction effect of irrigation and variety showed that, normal irrigation in Opera with 1115 u.mg-1 protein and drought stress in Zarfam with 2784 u.mg-1 protein conducted to and minimum and maximum amounts of SOD activity. Interaction effect of irrigation, cultivar and selenium on SOD indicated that drought stress condition and 21 gr/ha selenium spraying in Zarfam variety with 3146 u.mg-1 protein gained to highest activities of SOD.Keywords: Drought stress, Rapeseed, Selenium, Superoxide dismutase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661816 An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure
Authors: Fiona Browne, Huiru Zheng, Haiying Wang, Francisco Azuaje
Abstract:
Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple “omic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of “omic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions.Keywords: Bayesian network, Classification, Data integration, Protein interaction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151815 An Algebra for Protein Structure Data
Authors: Yanchao Wang, Rajshekhar Sunderraman
Abstract:
This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421814 Are PEG Molecules a Universal Protein Repellent?
Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison
Abstract:
Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.
Keywords: Stainless steel, PEG, QCM-D, protein, PEI layer, silicate layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861813 Impact of Interventions by Consortium for Improving Agriculture-based Livelihoods in Central Africa (CIALCA) on Food and Nutrition Security of Farmer Households
Authors: Ekesa B. Nakhauka, De Lange M., Macharia I., Garming H., Ouma E., Birachi E., Van Asten P., Van-Lauwe B., Blomme G.
Abstract:
Impact of adopting products promoted by the Consortium for Improving Agriculture-based livelihoods in Central Africa (CIALCA) on food and nutrition security was tested. Multi-stage sampling was used to select 7 project mandate areas, 5 villages/mandate area (stratified into action, satellite and control sites) and 913 households. Structured questionnaires were administered; analysis of impact based on comparison between stratums, differences in means tested by ANOVA and significance of difference obtained by Tukey's HSD multiple rank tests. Perception of adequate food sufficiency received a higher rating in action and satellite sites compared to control sites reason being improved agricultural technologies. For >60% of households, worsened food security was due to climatic conditions. Although a higher proportion of households in action and satellite was meeting calorie RDIs in DRC and Burundi the difference was insignificant from control sites. 53% of respondents in control sites indicated a decrease in intake of protein rich foods, this was significantly higher than the proportion in the action (46%) and satellite (41%) sites.
Keywords: Food security, Farmer-households, Nutrition security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20181812 Predicting Protein Function using Decision Tree
Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur
Abstract:
The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.Keywords: Sequence Derived Features, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950