Search results for: micro motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1043

Search results for: micro motor

893 Intelligent Control and Modelling of a Micro Robot for In-pipe Application

Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour

Abstract:

In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.

Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
892 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding

Authors: Baghdasaryan Marinka

Abstract:

The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.

Keywords: Synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
891 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi

Abstract:

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
890 FPGA Implementation of the “PYRAMIDS“ Block Cipher

Authors: A. AlKalbany, H. Al hassan, M. Saeb

Abstract:

The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.

Keywords: FPGA, VHDL, micro-architecture, encryption, cryptography, algorithm, data communication security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
889 Effects of Mold Surface Roughness on Compressible Flow of Micro-Injection Molding

Authors: Nguyen Q. M. P., Chen X., Lam Y. C., Yue C. Y.

Abstract:

Polymer melt compressibility and mold surface roughness, which are generally ignored during the filling stage of the conventional injection molding, may become increasingly significant in micro injection molding where the parts become smaller. By employing the 2.5D generalized Hele-Shaw model, we presented here the effects of polymer compressibility and mold surface roughness on mold-filling in a micro-thickness cavity. To elucidate the effects of surface roughness, numerical investigations were conducted using a cavity flat plate which has two halves with different surface roughness. This allows the comparison of flow field on two different halves under identical processing conditions but with different roughness. Results show that polymer compressibility and mold surface roughness have effects on mold filling in micro injection molding. There is in shrinkage reduction as the density is increased due to polymer melt compressibility during the filling stage.

Keywords: Compressible flow, Micro-injection molding, Polymer, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
888 Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)

Authors: M. S. Merzoug, F. Naceri

Abstract:

This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.

Keywords: PMSM, FOC, DTC, hysteresis, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7004
887 Motor Coordination and Body Mass Index in Primary School Children

Authors: Ingrid Ruzbarska, Martin Zvonar, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Daniel Puciato

Abstract:

Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepubertal children and to determine the effect of excess body weight on motor coordination by comparing the motor ability levels of children with different body mass index (BMI) values. The data were collected from 436 children aged 7–10 years, without health limitations, fully participating in school physical education classes. Body height was measured with portable stadiometers (Harpenden, Holtain Ltd.), and body mass—with a digital scale (HN-286, Omron). Motor coordination was evaluated with the Kiphard-Schilling body coordination test, Körperkoordinationstest für Kinder. The normality test by Shapiro-Wilk was used to verify the data distribution. The correlation analysis revealed a statistically significant negative association between the dynamic balance and BMI, as well as between the motor quotient and BMI (p<0.01) for both boys and girls. The results showed no effect of gender on the difference in the observed trends. The analysis of variance proved statistically significant differences between normal weight children and their overweight or obese counterparts. Coordination abilities probably play an important role in preventing or moderating the negative trajectory leading to childhood overweight and obesity. At this age, the development of coordination abilities should become a key strategy, targeted at long-term prevention of obesity and the promotion of an active lifestyle in adulthood. Motor performance is essential for implementing a healthy lifestyle in childhood already. Physical inactivity apparently results in motor deficits and a sedentary lifestyle in children, which may be accompanied by excess energy intake and overweight.

Keywords: Childhood, KTK test, Physical education, Psychomotor competence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
886 Takagi-Sugeno Fuzzy Control of Induction Motor

Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss

Abstract:

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
885 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

Authors: Kheldoun Aissa, Khodja Djalal Eddine

Abstract:

The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.

Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
884 Observers Design for Systems Modelled by Bond Graphs with Multivariable Monotone Nonlinearities

Authors: Gilberto Gonzalez-A, Gerardo Jaimes-A

Abstract:

A methodology to design a nonlinear observer in a bond graph approach is proposed. The class of nonlinear observer with multivariable nonlinearities is considered. A junction structure of the bond graph observer is proposed. The proposed methodology to an electrical transformer and a DC motor including the nonlinear saturation is applied. Nonlinear observers for the transformer and DC motor based on multivariable circle criterion in the physical domain are proposed. In order to show the saturation effects on the transformer and DC motor, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.

Keywords: Bond graph, nonlinear observer, electrical transformer, nonlinear saturation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
883 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
882 Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore

Authors: Edison Muzenda, Ayo S Afolabi

Abstract:

This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.

Keywords: Flotation, Conventional air, Oven micro-cracking, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
881 Essential Micronutrient Biofortification of Sprouts Grown on Mineral Fortified Fiber Mats

Authors: Jacquelyn Nyenhuis, Jaroslaw W. Drelich

Abstract:

Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease, metabolic syndrome, diabetes and related complications. This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. In the feasibility study described in this contribution, recycled cellulose fibers and clay, saturated with either micro-nutrient copper ions or copper nanoparticles, were converted to a novel mineral-cellulose fiber carrier of essential micro-nutrient and of antimicrobial properties. Seeds of Medicago sativa (alfalfa), purchased from a commercial, organic supplier were germinated on engineered cellulose fiber mats. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed ~2 increase in Cu of the sprouts grown on the fiber mats with copper particles, and ~4 increase on mats with ionic copper as compared to the control samples. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: Bio-fortification, copper nutrient uptake, sprout, mineral-fortified mat, micro-nutrient uptake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
880 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation

Authors: Mohd Tariq

Abstract:

The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.

Keywords: Packed U-Cell inverter, pulse width modulation, five-phase system, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
879 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
878 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
877 Dimensioning of Subsynchronous Cascade for Speed Regulation of Two-Motors 6kv Conveyer Drives

Authors: M. Kasumović, A. Hodžić, M. Tešanović

Abstract:

One way for optimum loading of overdimensioning conveyers is speed (capacity) decrement, with attention for production capabilities and demands. At conveyers which drives with three phase slip-ring induction motor, technically reasonable solution for conveyer (driving motors) speed regulation is using constant torque subsynchronous cascade with static semiconductor converter and transformer for energy reversion to the power network. In the paper is described mathematical model for parameter calculation of two-motors 6 kV subsynchronous cascade. It is also demonstrated that applying of this cascade gave several good properties, foremost in electrical energy saving, also in improving of other energy indexes, and finally that results in cost reduction of complete electrical motor drive.

Keywords: Conveyer with rubber belt, electrical motor drive, sub synchronous cascade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
876 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Authors: Khaled A. Madi

Abstract:

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.

Keywords: Power, inverter, PWM, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4379
875 Study on Position Polarity Compensation for Permanent Magnet Synchronous Motor Based on High Frequency Signal Injection

Authors: Gu Shan-Mao, He Feng-You, Ye Sheng-Wen, Ma Zhi-Xun

Abstract:

The application of a high frequency signal injection method as speed and position observer in PMSM drives has been a research focus. At present, the precision of this method is nearly good as that of ten-bit encoder. But there are some questions for estimating position polarity. Based on high frequency signal injection, this paper presents a method to compensate position polarity for permanent magnet synchronous motor (PMSM). Experiments were performed to test the effectiveness of the proposed algorithm and results present the good performance.

Keywords: permanent magnet synchronous motor, sensorless, high-frequency signal injection, magnetic pole position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
874 Level Shifted Carrier Signal Based Scalar Random Pulse Width Modulation Algorithms for Cascaded Multilevel Inverter Fed Induction Motor Drive

Authors: M. Nayeemuddin, T. Bramhananda Reddy, M. Vijaya Kumar

Abstract:

Acoustic noise becoming ever more obnoxious radiated by voltage source inverter fed induction motor drive in modern and industrial applications. The drive utilized for industrial and modern applications should use “spread spectrum” innovation known as Random pulse width modulation (PWM) algorithms where acoustic noise emanates through the machine should be critically concerned. This paper illustrates three types of random PWM control algorithms with fixed switching frequency namely 1) Random modulating PWM 2) Random carrier PWM and 3) Random modulating-carrier PWM. The spectrum plots of the motor stator current demonstrate the strength and robustness of the proposed PWM algorithms. To affirm the proposed algorithms, experimental tests have been conducted using dSPACE rt1104 control board on a v/f control three phase induction motor drive fed by DC link cascaded multilevel inverter.

Keywords: Multilevel inverter, acoustic noise, CSVPWM, total harmonic distortion, random PWM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
873 Static Balance in the Elderly: Comparison between Elderly Performing Physical Activity and Fine Motor Coordination Activity

Authors: Andreia Guimarães Farnese, Mateus Fernandes Réu Urban, Leandro Procópio, Renato Zângaro, Regiane Albertini

Abstract:

Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and physical activity group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.

Keywords: Balance, barapodometer, coordination, elderly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
872 New Robust Approach of Direct Field Oriented Control of Induction Motor

Authors: T. Benmiloud, A. Omari

Abstract:

This paper presents a new technique of compensation of the effect of variation parameters in the direct field oriented control of induction motor. The proposed method uses an adaptive tuning of the value of synchronous speed to obtain the robustness for the field oriented control. We show that this adaptive tuning allows having robustness for direct field oriented control to changes in rotor resistance, load torque and rotational speed. The effectiveness of the proposed control scheme is verified by numerical simulations. The numerical validation results of the proposed scheme have presented good performances compared to the usual direct-field oriented control.

Keywords: Induction motor, direct field-oriented control, compensation of variation parameters, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
871 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
870 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez

Abstract:

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

Keywords: Hard disk drive, HDD, energy harvesting, voice coil motor, VCM, energy harvester, gait motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
869 The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

Authors: Tang Yuan Chen, Chang Hsin Chen, Chiun Hsun Chen

Abstract:

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

Keywords: Flow pattern, MEMS, PEMFC, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
868 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
867 Analysis of Vibration Signal of DC Motor Based on Hilbert-Huang Transform

Authors: Chun-Yao Lee, Hung-Chi Lin

Abstract:

This paper presents a signal analysis process for improving energy completeness based on the Hilbert-Huang Transform (HHT). Firstly, the vibration signal of a DC Motor obtained by employing an accelerometer is the model used to analyze the signal. Secondly, the intrinsic mode functions (IMFs) and Hilbert spectrum of the decomposed signal are obtained by applying HHT. The results of the IMFs constituent and the original signal are compared and the process of energy loss is discussed. Finally, the differences between Wavelet Transform (WT) and HHT in analyzing the signal are compared. The simulated results reveal the analysis process based on HHT is advantageous for the enhancement of energy completeness.

Keywords: Hilbert-Huang transform, Hilbert spectrum, Wavelettransform, Wavelet spectrum, DC Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
866 Sensorless Control of Induction Motor: Design and Stability Analysis

Authors: Nadia Bensiali, Erik Etien, Amar Omeiri, Gerard Champenois

Abstract:

Adaptive observers used in sensorless control of induction motors suffer from instability especally in regenerating mode. In this paper, an optimal feed back gain design is proposed, it can reduce the instability region in the torque speed plane .

Keywords: Induction motor drive, adaptive observer, regenerating mode, stabilizing design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
865 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
864 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan

Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow

Abstract:

Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 ng/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.

Keywords: Pharmaceuticals and personal care products, wastewater, Jordan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196