Search results for: generative adversary networks
1882 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10741881 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.
Keywords: Smart grid network, security, threats, vulnerabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951880 An Adversarial Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12281879 A Systematic Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.
Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141878 A Survey of Access Control Schemes in Wireless Sensor Networks
Authors: Youssou Faye, Ibrahima Niang, Thomas Noel
Abstract:
Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26541877 A method of Authentication for Quantum Networks
Authors: Stefan Rass
Abstract:
Quantum cryptography offers a way of key agreement, which is unbreakable by any external adversary. Authentication is of crucial importance, as perfect secrecy is worthless if the identity of the addressee cannot be ensured before sending important information. Message authentication has been studied thoroughly, but no approach seems to be able to explicitly counter meet-in-the-middle impersonation attacks. The goal of this paper is the development of an authentication scheme being resistant against active adversaries controlling the communication channel. The scheme is built on top of a key-establishment protocol and is unconditionally secure if built upon quantum cryptographic key exchange. In general, the security is the same as for the key-agreement protocol lying underneath.Keywords: Meet-in-the-middle attack, quantum key distribution, quantum networks, unconditionally secure authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041876 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881875 Analysis of Detecting Wormhole Attack in Wireless Networks
Authors: Khin Sandar Win
Abstract:
In multi hop wireless systems, such as ad hoc and sensor networks, mobile ad hoc network applications are deployed, security emerges as a central requirement. A particularly devastating attack is known as the wormhole attack, where two or more malicious colluding nodes create a higher level virtual tunnel in the network, which is employed to transport packets between the tunnel end points. These tunnels emulate shorter links in the network. In which adversary records transmitted packets at one location in the network, tunnels them to another location, and retransmits them into the network. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In this paper, we analyze wormhole attack nature in ad hoc and sensor networks and existing methods of the defending mechanism to detect wormhole attacks without require any specialized hardware. This analysis able to provide in establishing a method to reduce the rate of refresh time and the response time to become more faster.Keywords: Ad hoc network, Sensor network, Wormhole attack, defending mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22961874 Low Energy Method for Data Delivery in Ubiquitous Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.Keywords: Data delivery, routing, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13441873 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001872 Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models
Authors: Mahmoud Elmezain, Samar El-shinawy
Abstract:
Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.
Keywords: Statistical Pattern Recognition, Generative Model, Discriminative Model, Human Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29351871 Next Generation Networks and Their Relation with Ad-hoc Networks
Authors: Hamid Barati, Ali Movaghar, Ali Barati, Arash Azizi Mazreah , Ehsan Shahsavari Gogheri, Faranak Mohsenzadeh
Abstract:
The communication networks development and advancement during two last decades has been toward a single goal and that is gradual change from circuit-switched networks to packed switched ones. Today a lot of networks operates are trying to transform the public telephone networks to multipurpose packed switch. This new achievement is generally called "next generation networks". In fact, the next generation networks enable the operators to transfer every kind of services (sound, data and video) on a network. First, in this report the definition, characteristics and next generation networks services and then ad-hoc networks role in the next generation networks are studied.Keywords: NGNs services, Ad-hoc Networks, NGN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941870 Simulation using the Recursive Method in USN
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.Keywords: Data filtering, recursive CNP, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15021869 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11991868 Wormhole Attack Detection in Wireless Sensor Networks
Authors: Zaw Tun, Aung Htein Maw
Abstract:
The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).Keywords: AODV, Wormhole attacks, Wireless ad hoc andsensor networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34681867 Detecting and Locating Wormhole Attacks in Wireless Sensor Networks Using Beacon Nodes
Authors: He Ronghui, Ma Guoqing, Wang Chunlei, Fang Lan
Abstract:
This paper focuses on wormhole attacks detection in wireless sensor networks. The wormhole attack is particularly challenging to deal with since the adversary does not need to compromise any nodes and can use laptops or other wireless devices to send the packets on a low latency channel. This paper introduces an easy and effective method to detect and locate the wormholes: Since beacon nodes are assumed to know their coordinates, the straight line distance between each pair of them can be calculated and then compared with the corresponding hop distance, which in this paper equals hop counts × node-s transmission range R. Dramatic difference may emerge because of an existing wormhole. Our detection mechanism is based on this. The approximate location of the wormhole can also be derived in further steps based on this information. To the best of our knowledge, our method is much easier than other wormhole detecting schemes which also use beacon nodes, and to those have special requirements on each nodes (e.g., GPS receivers or tightly synchronized clocks or directional antennas), ours is more economical. Simulation results show that the algorithm is successful in detecting and locating wormholes when the density of beacon nodes reaches 0.008 per m2.
Keywords: Beacon node, wireless sensor network, worm hole attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18781866 Encoding and Compressing Data for Decreasing Number of Switches in Baseline Networks
Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh, Hasan Asil, Amir Asil
Abstract:
This method decrease usage power (expenditure) in networks on chips (NOC). This method data coding for data transferring in order to reduces expenditure. This method uses data compression reduces the size. Expenditure calculation in NOC occurs inside of NOC based on grown models and transitive activities in entry ports. The goal of simulating is to weigh expenditure for encoding, decoding and compressing in Baseline networks and reduction of switches in this type of networks. KeywordsNetworks on chip, Compression, Encoding, Baseline networks, Banyan networks.
Keywords: Networks on chip, Compression, Encoding, Baseline networks, Banyan networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811865 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8101864 Communication in a Heterogeneous Ad Hoc Network
Authors: C. Benjbara, A. Habbani
Abstract:
Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.Keywords: Ad hoc, heterogeneous, ID-Node, OLSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7491863 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13271862 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks
Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi
Abstract:
Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.
Keywords: Fiber-Wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241861 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261860 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.
Keywords: Wireless performance analysis, Coexistence analysis, IEEE 802.11g, IEEE 802.15.4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431859 An Improved Construction Method for MIHCs on Cycle Composition Networks
Authors: Hsun Su, Yuan-Kang Shih, Shin-Shin Kao
Abstract:
Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC-s, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC-s on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC-s in the cycle composition networks and the result is optimal in the sense that the number of MIHC-s we constructed is maximal.
Keywords: Hamiltonian cycle, k-ary n-cube, cycle composition networks, mutually independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891858 Peer-to-Peer Epidemic Algorithms for Reliable Multicasting in Ad Hoc Networks
Authors: Zülküf Genç, Öznur Özkasap
Abstract:
Characteristics of ad hoc networks and even their existence depend on the nodes forming them. Thus, services and applications designed for ad hoc networks should adapt to this dynamic and distributed environment. In particular, multicast algorithms having reliability and scalability requirements should abstain from centralized approaches. We aspire to define a reliable and scalable multicast protocol for ad hoc networks. Our target is to utilize epidemic techniques for this purpose. In this paper, we present a brief survey of epidemic algorithms for reliable multicasting in ad hoc networks, and describe formulations and analytical results for simple epidemics. Then, P2P anti-entropy algorithm for content distribution and our prototype simulation model are described together with our initial results demonstrating the behavior of the algorithm.
Keywords: Ad hoc networks, epidemic, peer-to-peer, reliablemulticast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701857 Study of the Vertical Handoff in Heterogeneous Networks and Implement Based On Opnet
Authors: W. Benaatou, A. Latif
Abstract:
In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS andWiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.
Keywords: Vertical handoff, WLAN, UMTS, WIMAX, Heterogeneous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241856 A New Group Key Management Protocol for Wireless Ad-Hoc Networks
Authors: Rony H. Rahman, Lutfar Rahman
Abstract:
Ad hoc networks are characterized by multi-hop wireless connectivity and frequently changing network topology. Forming security association among a group of nodes in ad-hoc networks is more challenging than in conventional networks due to the lack of central authority, i.e. fixed infrastructure. With that view in mind, group key management plays an important building block of any secure group communication. The main contribution of this paper is a low complexity key management scheme that is suitable for fully self-organized ad-hoc networks. The protocol is also password authenticated, making it resilient against active attacks. Unlike other existing key agreement protocols, ours make no assumption about the structure of the underlying wireless network, making it suitable for “truly ad-hoc" networks. Finally, we will analyze our protocol to show the computation and communication burden on individual nodes for key establishment.Keywords: Ad-hoc Networks, Group Key Management, Key Management Protocols, Password Authentication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17611855 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151854 Fast Complex Valued Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18241853 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.
Keywords: Influence maximization, dynamic social networks, diffusion, social influence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415