Search results for: finite-element method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8092

Search results for: finite-element method

8092 Finite Element Investigation of Transmission Conditions for Non-Monotonic Temperature Interphases

Authors: Hamid Mozafari, Andreas Öchsner, Amran Alias

Abstract:

Imperfect transmission conditions modeling a thin reactive 2D interphases layer between two dissimilar bonded strips have been extracted. In this paper, the soundness of these transmission conditions for heat conduction problems are examined by the finite element method for a strong temperature-dependent source or sink and non-monotonic temperature distributions around the faces..

Keywords: Imperfect interface, Transmission conditions, Finiteelement analysis, Interphase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
8091 FEM Investigation of Induction Heating System for Pipe Brazing

Authors: Ilona I. Iatcheva, Rumena D. Stancheva, Mario Metodiev

Abstract:

The paper deals with determination of electromagnetic and temperature field distribution of induction heating system used for pipe brazing. The problem is considered as coupled – time harmonic electromagnetic and transient thermal field. It has been solved using finite element method. The detailed maps of electromagnetic and thermal field distribution have been obtained. The good understanding of the processes in the considered system ensures possibilities for control, management and increasing the efficiency of the welding process.

Keywords: Electromagnetic field, temperature field, finiteelement method, induction heating, pipe brazing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
8090 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
8089 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
8088 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: M. Tajdari, A. R. Nezamabadi, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: Buckling, Perforated plates, Boundary condition, Rectangular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3452
8087 Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine

Authors: Ali A. Mehna, Mohmed A. Ali, Ali S. Zayed

Abstract:

A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysis

Keywords: High speed, PM motor, rotor and stator losses, finiteelement analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
8086 Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets

Authors: N.Karunakaran, V.Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of magnesium alloy sheets by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTAW welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was 2mm thin AZ 31 B magnesium alloy, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from this study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: gas tungsten arc welding, pulsed current, finiteelement analysis, thermal analysis, magnesium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
8085 Stress Analysis of Adhesively Bonded Double- Lap Joints Subjected to Combined Loading

Authors: Solyman Sharifi, Naghdali Choupani

Abstract:

Adhesively bonded joints are preferred over the conventional methods of joining such as riveting, welding, bolting and soldering. Some of the main advantages of adhesive joints compared to conventional joints are the ability to join dissimilar materials and damage-sensitive materials, better stress distribution, weight reduction, fabrication of complicated shapes, excellent thermal and insulation properties, vibration response and enhanced damping control, smoother aerodynamic surfaces and an improvement in corrosion and fatigue resistance. This paper presents the behavior of adhesively bonded joints subjected to combined thermal loadings, using the numerical methods. The joint configuration considers aluminum as central adherend with six different outer adherends including aluminum, steel, titanium, boronepoxy, unidirectional graphite-epoxy and cross-ply graphite-epoxy and epoxy-based adhesives. Free expansion of the joint in x direction was permitted and stresses in adhesive layer and interfaces calculated for different adherends.

Keywords: Thermal stress, patch repair, Adhesive joint, Finiteelement analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877
8084 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li

Abstract:

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
8083 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis

Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon

Abstract:

In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.

Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
8082 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
8081 Seat Assignment Problem Optimization

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.

Keywords: Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM), A Real Word Assignment Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
8080 A New Method to Solve a Non Linear Differential System

Authors: Seifedine Kadry

Abstract:

In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.

Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
8079 An Efficient Method for Solving Multipoint Equation Boundary Value Problems

Authors: Ampon Dhamacharoen, Kanittha Chompuvised

Abstract:

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.

Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
8078 The Differential Transform Method for Advection-Diffusion Problems

Authors: M. F. Patricio, P. M. Rosa

Abstract:

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Keywords: Method of Lines, Differential Transform Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
8077 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
8076 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
8075 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
8074 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
8073 Analytical Solutions of Kortweg-de Vries(KdV) Equation

Authors: Foad Saadi, M. Jalali Azizpour, S.A. Zahedi

Abstract:

The objective of this paper is to present a comparative study of Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Homotopy Analysis Method (HAM) for the semi analytical solution of Kortweg-de Vries (KdV) type equation called KdV. The study have been highlighted the efficiency and capability of aforementioned methods in solving these nonlinear problems which has been arisen from a number of important physical phenomenon.

Keywords: Variational Iteration Method (VIM), HomotopyPerturbation Method (HPM), Homotopy Analysis Method (HAM), KdV Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
8072 Some Results on Preconditioned Modified Accelerated Overrelaxation Method

Authors: Guangbin Wang, Deyu Sun, Fuping Tan

Abstract:

In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.

Keywords: preconditioned, MAOR method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
8071 An Active Set Method in Image Inpainting

Authors: Marrick Neri, Esmeraldo Ronnie Rey Zara

Abstract:

In this paper, we apply a semismooth active set method to image inpainting. The method exploits primal and dual features of a proposed regularized total variation model, following after the technique presented in [4]. Numerical results show that the method is fast and efficient in inpainting sufficiently thin domains.

Keywords: Active set method, image inpainting, total variation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
8070 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
8069 Application of He’s Parameter-Expansion Method to a Coupled Van Der Pol oscillators with Two Kinds of Time-delay Coupling

Authors: Mohammad Taghi Darvishi, Samad Kheybari

Abstract:

In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity is studied. We provide an approximate solution for this system using parameterexpansion method. Also, we obtain approximate values for frequencies of the system. The parameter-expansion method is more efficient than the perturbation method for this system because the method is independent of perturbation parameter assumption.

Keywords: Parameter-expansion method, coupled van der pol oscillator, time-delay system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
8068 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: Dynamical diffraction, hologram, object image, X-ray holography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
8067 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
8066 Calculation of Heating Load for an Apartment Complex with Unit Building Method

Authors: Ju-Seok Kim, Sun-Ae Moon, Tae-Gu Lee, Seung-Jae Moon, Jae-Heon Lee

Abstract:

As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.

Keywords: Unit Building Method, Unit Heating Load, TFMLoad.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
8065 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar

Abstract:

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
8064 A New Preconditioned AOR Method for Z-matrices

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

Keywords: Z-matrix, AOR-type iterative method, precondition, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
8063 A Family of Improved Secant-Like Method with Super-Linear Convergence

Authors: Liang Chen

Abstract:

A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.

Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047