Search results for: crack width calculation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1168

Search results for: crack width calculation

1138 Fatigue Analysis of Crack Growing Rate and Stress Intensity Factor for Stress Corrosion Cracking in a Pipeline System

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Environment-assisted cracking (EAC) is one of the most serious causes of structural failure over a broad range of industrial applications including offshore structures. In EAC condition there is not a definite relation such as Paris equation in Linear Elastic Fracture Mechanics (LEFM). According to studying and searching a lot what the researchers said either a material has contact with hydrogen or any other corrosive environment, phenomenon of electrical and chemical reactions of material with its environment will be happened. In the literature, there are many different works to consider fatigue crack growing and solve it but they are experimental works. Thus, in this paper, authors have an aim to evaluate mathematically the pervious works in LEFM. Obviously, if an environment is more sour and corrosive, the changes of stress intensity factor is more and the calculation of stress intensity factor is difficult. A mathematical relation to deal with the stress intensity factor during the diffusion of sour environment especially hydrogen in a marine pipeline is presented. By using this relation having and some experimental relation an analytical formulation will be presented which enables the fatigue crack growth and critical crack length under cyclic loading to be predicted. In addition, we can calculate KSCC and stress intensity factor in the pipeline caused by EAC.

Keywords: Embrittlement, Fracture mechanics, Hydrogen diffusion, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
1137 Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

This study concerned the dynamic behavior of the wind turbine rotor. Before all we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue, also studied the rotor with longitudinal crack in order to determine stress, strain and displacement. Firstly we compared the first six modes shapes between cracking and uncracking of HAWT rotor. Secondly we show show evolution of first six natural frequencies with longitudinal crack propagation. Finally we conclude that the residual change in the natural frequencies can be used as in shaft crack diagnosis predictive maintenance.

Keywords: Wind turbine rotor, natural frequencies, longitudinal crack growth, life time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1136 Composite Patch Repair of Central Crack Growth in Aluminium Alloy Plate

Authors: S. Lecheb, A. Chellil, H. Mechakra, A. Zeggane, H. Kebir

Abstract:

In this work, repaired crack in 6061- T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its seize vary from 20 mm to 60 mm and we compare the first results with second. Thirdly we repair various cracks with composite patch (carbon/ epoxy) and for (2 layers, 4 layers). Finally the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair.

Keywords: Composite patch repair, crack growth, aluminum alloy plate, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1135 Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Authors: M. Benachour, N. Benachour

Abstract:

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.

Keywords: Fatigue crack, stainless steel, mean stress, amplitudeloading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
1134 Finite Element Analysis of Crack Welding Process

Authors: Thomas Jin-Chee Liu

Abstract:

The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.

Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
1133 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo

Abstract:

A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.

Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1132 The Estimation of Semi Elliptical Surface Cracks Advancement via Fuzzy Logic

Authors: Gürol Önal, Ahmet Avcı

Abstract:

This paper presented the results of an experimental investigation into the axial fatigue behavior of a 5086 aluminum alloy which have several notch-aspect ratios a0/c0 and notch thickness ratio a/t with semi-elliptical surface cracks. Tests were conducted in la b air for stress levels of 50 % of their yield strength. Experiments were carried out for various notch to thickness ratios. Crack growth rates of test specimens both in surface and depth directions were determined by using die penetration method. Fuzzy Logic method was used to predict the deep direction crack growth because the dept of the crack is considerably difficult to measure.

Keywords: Axial fatigue, Crack growth rate, surface crack, Al-Mg alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1131 A Proof for Bisection Width of Grids

Authors: Kemal Efe, Gui-Liang Feng

Abstract:

The optimal bisection width of r-dimensional N× · · ·× N grid is known to be Nr-1 when N is even, but when N is odd, only approximate values are available. This paper shows that the exact bisection width of grid is Nr -1 N-1 when N is odd.

Keywords: Grids, Parallel Architectures, Graph Bisection, VLSI Layouts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1130 Mechanical Characteristics on Fatigue Crack Propagation in Aluminium Plate

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems.

Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: Aluminium alloys, plate, crack, failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
1129 Effect of Welding Processes on Fatigue Properties of Ti-6Al-4V Alloy Joints

Authors: T.S.Balasubramanian, V.Balasubramanian, M.A.Muthumanikkam

Abstract:

This paper reports the fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V titanium alloy. Centre cracked tensile specimens were prepared to evaluate the fatigue crack growth behaviour. A 100kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load (stress ratio of 0.1 and frequency of 10 Hz). Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Critical and threshold stress intensity factor ranges were also evaluated. Fatigue crack growth behaviour of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.

Keywords: Fatigue, Non ferrous metals and alloys, welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456
1128 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: Chitin, composites, interfaces, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
1127 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

Authors: A. Tavangari, N. Salehzadeh

Abstract:

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny- Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Keywords: Penny-shaped crack, Stress intensity factor, Fracture mechanics, Ritz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1126 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1125 Application of a Fracture-Mechanics Approach to Gas Pipelines

Authors: Ľubomír Gajdoš, Martin Šperl

Abstract:

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.

Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
1124 Investigating the Fatigue Crack Initiation Location in Interference Fitted and/or bolt Clamped Al 2024-T3 Double Shear Lap Joints

Authors: Babak Abazadeh, Hadi Rezghi Maleki

Abstract:

In this paper the fatigue crack initiation location of double shear lap joints, treated by interference fit and bolt clamping, have been investigated both experimentally and numerically. To do so, using the fracture section of available fatigue tested specimens of interference fitted and torque tightened Aluminum 2024-T3 plates, the crack initiation location was determined. The stress distribution attained from the finite element analysis was used to help explain the results observed in the experimental tests. The results showed that the fatigue crack initiation location changes from top and mid plane at the hole edge to somewhere far from the hole edge (stress concentration region) in different combination of clamping force, interference fit size and applied cyclic load ranges. It is worth mentioning that the fatigue crack initiation location affects the fatigue life of the specimens too.

Keywords: Fatigue crack initiation, interference fit, bolt clamping, double shear lap joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
1123 Stress Ratio and Notch Effect on Fatigue Crack Initiation and Propagation in 2024 Al-alloy

Authors: N. Benachour, A. Hadjoui, M. Benachour, M. Benguediab

Abstract:

This study reports an empirical investigation of fatigue crack initiation and propagation in 2024 T351 aluminium alloy using constant amplitude loading. In initiation stage, local strain approach at the notch was used and in stable propagation stage NASGRO model was applied. In this investigation, the flat plate of double through crack at hole is used. Based on experimental results (AFGROW Database), effect of stress ratio, R, is highlights on fatigue initiation life (FIL) and fatigue crack growth rate (FCGR). The increasing of dimension of hole characterizing the notch effect decrease the fatigue life.

Keywords: Fatigue crack growth, initiation life, Al-Alloy, stressratio, notch effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3206
1122 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked de Laval rotor-stator system derived based on Energy Principles. The model has been used to simulate coupled torsionallateral response of the faulty system with multiple parametric excitations; rotor-stator-rub, a breathing transverse crack, eccentric mass and an axial force. Nonlinearity of a “breathing” crack is incorporated in the model using a simple hinge mechanism suitable for a shallow crack. Response of the system while passing via its critical speed with intermittent rotor-stator rub is analyzed. Effects of eccentricity with phase and acceleration are investigated. Features of crack, rub and eccentricity in vibration response are explored for condition monitoring. The presence of a crack and rub are observable in the power spectrum despite excitations by an axial force and rotor unbalance. Obtained results are consistent with existing literature and could be adopted into rotor condition monitoring strategies.

Keywords: Axial force, Crack, Nonlinear, Rotor-Stator, Rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
1121 Method of Moments for Analysis of Multiple Crack Interaction in an Isotropic Elastic Solid

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

The problem of N cracks interaction in an isotropic elastic solid is decomposed into a subproblem of a homogeneous solid without crack and N subproblems with each having a single crack subjected to unknown tractions on the two crack faces. The unknown tractions, namely pseudo tractions on each crack are expanded into polynomials with unknown coefficients, which have to be determined by the consistency condition, i.e. by the equivalence of the original multiple cracks interaction problem and the superposition of the N+1 subproblems. In this paper, Kachanov-s approach of average tractions is extended into the method of moments to approximately impose the consistence condition. Hence Kachanov-s method can be viewed as the zero-order method of moments. Numerical results of the stress intensity factors are presented for interactions of two collinear cracks, three collinear cracks, two parallel cracks, and three parallel cracks. As the order of moment increases, the accuracy of the method of moments improves.

Keywords: Crack interaction, stress intensity factor, multiplecracks, method of moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1120 Elastic Failure of Web-Cracked Plate Girder

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.

Keywords: Fatigue crack, flange yielding, flange buckling, web buckling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
1119 Study on Distortion of Bi-Steel Concrete Beam

Authors: G. W. Ni, Y. M. Zhang, D. L. Jiang, J. N. Chen, X. G. Wang

Abstract:

As an economic and safe structure, Bi-steel is widely used in reinforced concrete with less consumption of steel. In this paper, III Bi-steel concrete beam has been analyzed. Through careful observation and theoretical analysis, the new calculating formulae for structural rigidity and crack have been formulated for this Bi-steel concrete beam. And structural rigidity and the crack features have also been theoretically analyzed.

Keywords: Bi-steel, concrete beam, crack, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1118 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
1117 2D Fracture Analysis of the First Compression Piston Ring

Authors: I. Razmi, N. Choupani

Abstract:

The incidence of mechanical fracture of an automobile piston rings prompted development of fracture analysis method on this case. The three rings (two compression rings and one oil ring) were smashed into several parts during the power-test (after manufacturing the engine) causing piston and liner to be damaged. The radial and oblique cracking happened on the failed piston rings. The aim of the fracture mechanics simulations presented in this paper was the calculation of particular effective fracture mechanics parameters, such as J-integrals and stress intensity factors. Crack propagation angles were calculated as well. Two-dimensional fracture analysis of the first compression ring has been developed in this paper using ABAQUS CAE6.5-1 software. Moreover, SEM fractography was developed on fracture surfaces and is discussed in this paper. Results of numerical calculations constitute the basis for further research on real object.

Keywords: Compression piston ring, Crack, Fracture mechanics, SEM fractography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
1116 Approximate Tension Buckling Capacity of Thin Edge-Cracked Web Plate Subjected to Pure Bending

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical edge-crack within a web plate subjected to pure bending induces local compressive stresses about the crack which may cause tension buckling. Approximate theoretical expressions were derived for the critical far-field tensile stress and bending moment capacity of an edge-cracked web plate associated with tension buckling. These expressions were validated with finite element analyses and used to investigate the possibility of tension buckling in web-cracked trial girders. It was found that tension buckling is an unlikely occurrence unless the web is relatively thin or the crack is very long.

Keywords: Fatigue crack, tension buckling, Rayleigh-Ritz, structural stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1115 Effect of Mode Loading on FCRG Plate with Double Through Crack at Hole

Authors: M. Benachour, N. Benachour, M. Benguediab, A. Hadjoui

Abstract:

The knowledge of the nature of loading is very important in order to hold account on the total behavior such as vibration, shock, fatigue, etc. Fatigue present 90% of failure when loadings fatigues are very complex. In this paper a study of double through crack at hole for plate subjected to fatigue loading is presented. Various modes loading are studied where the applied load is the same one. The fatigue life is given where the effect of stress ratio is highlighted. This work is conducted on aluminum alloy 2024 T351 used for much aerospace and aeronautics applications. The fatigue crack growth behavior with constant amplitude is studied using the AFGROW code when Forman model is applied. The fatigue crack growth rate and fatigue life for different loading modes are compared with variation of others geometrical parameter such as thickness and dimensions of notch hole.

Keywords: Fatigue crack, mode loading, aluminum alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
1114 Numerical and Experimental Studies of Joule Heating Effects around Crack and Notch Tips

Authors: Thomas Jin-Chee Liu, Ji-Fu Tseng, Yu-Shen Chen

Abstract:

This paper investigates the thermo-electric effects around the crack and notch tips under the electric current load. The research methods include the finite element analysis and thermal imaging experiment. The finite element solutions show that the electric current density field concentrates at the crack tip. Due to the Joule heating, this electric concentration causes the hot spot at the tip zone. From numerical and experimental results, this hot spot is identified. The temperature of the hot spot is affected by the electric load, operation time and geometry of the sample.

Keywords: Thermo-electric, Joule heating, crack tip, notch tip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1113 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.

Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458
1112 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation variation of cyclic loading effect on fatigue crack growth is the studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e. with a single overload, overload band… etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: Fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, Al-alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
1111 Simulation and Experimentation on the Contact Width of New Metal Gasket for Asbestos Substitution

Authors: Moch. Agus Choiron, Yoshihiro Kurata, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

The contact width is important design parameter for optimizing the design of new metal gasket for asbestos substitution gasket. The contact width is found have relationship with the helium leak quantity. In the increasing of axial load value, the helium leak quantity is decreasing and the contact width is increasing. This study provides validity method using simulation analysis and the result is compared to experimental using pressure sensitive paper. The results denote similar trend data between simulation and experimental result. Final evaluation is determined by helium leak quantity to check leakage performance of gasket design. Considering the phenomena of position change on the convex contact, it can be developed the optimization of gasket design by increasing contact width.

Keywords: contact width, simulation, pressure sensitive paper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1110 Effect of Inclusions on the Shape and Size of Crack Tip Plastic Zones by Element Free Galerkin Method

Authors: A. Jameel, G. A. Harmain, Y. Anand, J. H. Masoodi, F. A. Najar

Abstract:

The present study investigates the effect of inclusions on the shape and size of crack tip plastic zones in engineering materials subjected to static loads by employing the element free Galerkin method (EFGM). The modeling of the discontinuities produced by cracks and inclusions becomes independent of the grid chosen for analysis. The standard displacement approximation is modified by adding additional enrichment functions, which introduce the effects of different discontinuities into the formulation. The level set method has been used to represent different discontinuities present in the domain. The effect of inclusions on the extent of crack tip plastic zones is investigated by solving some numerical problems by the EFGM.

Keywords: EFGM, stress intensity factors, crack tip plastic zones, inclusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
1109 Failure Analysis of a Medium Duty Vehicle Leaf Spring

Authors: Gül Çevik

Abstract:

This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.

Keywords: Leaf spring, failure analysis, fatigue, fractography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688