Search results for: Scheduling algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3575

Search results for: Scheduling algorithm

3425 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
3424 Opportunistic Routing with Secure Coded Wireless Multicast Using MAS Approach

Authors: E. Golden Julie, S. Tamil Selvi, Y. Harold Robinson

Abstract:

Many Wireless Sensor Network (WSN) applications necessitate secure multicast services for the purpose of broadcasting delay sensitive data like video files and live telecast at fixed time-slot. This work provides a novel method to deal with end-to-end delay and drop rate of packets. Opportunistic Routing chooses a link based on the maximum probability of packet delivery ratio. Null Key Generation helps in authenticating packets to the receiver. Markov Decision Process based Adaptive Scheduling algorithm determines the time slot for packet transmission. Both theoretical analysis and simulation results show that the proposed protocol ensures better performance in terms of packet delivery ratio, average end-to-end delay and normalized routing overhead.

Keywords: Delay-sensitive data, Markovian Decision Process based Adaptive Scheduling, Opportunistic Routing, Digital Signature authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
3423 Delay Specific Investigations on QoS Scheduling Schemes for Real-Time Traffic in Packet Switched Networks

Authors: P.S.Prakash, S.Selvan

Abstract:

Packet switched data network like Internet, which has traditionally supported throughput sensitive applications such as email and file transfer, is increasingly supporting delay-sensitive multimedia applications such as interactive video. These delaysensitive applications would often rather sacrifice some throughput for better delay. Unfortunately, the current packet switched network does not offer choices, but instead provides monolithic best-effort service to all applications. This paper evaluates Class Based Queuing (CBQ), Coordinated Earliest Deadline First (CEDF), Weighted Switch Deficit Round Robin (WSDRR) and RED-Boston scheduling schemes that is sensitive to delay bound expectations for variety of real time applications and an enhancement of WSDRR is proposed.

Keywords: QoS, Delay-sensitive, Queuing delay, Scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
3422 Application of Adaptive Genetic Algorithm in Function Optimization

Authors: Panpan Xu, Shulin Sui

Abstract:

The crossover probability and mutation probability are the two important factors in genetic algorithm. The adaptive genetic algorithm can improve the convergence performance of genetic algorithm, in which the crossover probability and mutation probability are adaptively designed with the changes of fitness value. We apply adaptive genetic algorithm into a function optimization problem. The numerical experiment represents that adaptive genetic algorithm improves the convergence speed and avoids local convergence.

Keywords: Genetic algorithm, Adaptive genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
3421 Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling

Authors: Liu Ji-Wei, Pei Yu-Liang, Liu Qian, Han Xiang, Zeng De-Liang

Abstract:

The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.

Keywords: coordinate control system, coal quality disturbance, energy coefficient of coal quality, gain scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
3420 Production Scheduling Improvements in an Automotive Sector Company

Authors: Govind Sharan Dangayach, Himanshu Bhatt

Abstract:

The paper attempts to overcome the fluctuations occurring in demand of the components in an automotive sector company. Resource and time being the strict constraints, the production is not able to match the pace of the fluctuating demand. So, we introduce some production schedules that help in meeting out the required demand. The merits and demerits of the approaches are also highlighted.

Keywords: Production scheduling, Demand rise, Capacity constrained resource (CCR), Overtime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
3419 Optimal External Merge Sorting Algorithm with Smart Block Merging

Authors: Mir Hadi Seyedafsari, Iraj Hasanzadeh

Abstract:

Like other external sorting algorithms, the presented algorithm is a two step algorithm including internal and external steps. The first part of the algorithm is like the other similar algorithms but second part of that is including a new easy implementing method which has reduced the vast number of inputoutput operations saliently. As decreasing processor operating time does not have any effect on main algorithm speed, any improvement in it should be done through decreasing the number of input-output operations. This paper propose an easy algorithm for choose the correct record location of the final list. This decreases the time complexity and makes the algorithm faster.

Keywords: External sorting algorithm, internal sortingalgorithm, fast sorting, robust algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
3418 Analog Circuit Design using Genetic Algorithm: Modified

Authors: Amod P. Vaze

Abstract:

Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.

Keywords: Genetic algorithm, analog circuits, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
3417 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3416 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
3415 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS

Authors: Xiangbin Zhu

Abstract:

Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.

Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
3414 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

Authors: John T. Tsiligaridis

Abstract:

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
3413 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization

Authors: Panpan Xu, Shulin Sui, Zongjie Du

Abstract:

Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.

Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
3412 Arrival and Departure Scheduling at Hub Airports Considering Airlines Level

Authors: A. Nourmohammadzadeh, R. Tavakkoli- Moghaddam

Abstract:

As the air traffic increases at a hub airport, some flights cannot land or depart at their preferred target time. This event happens because the airport runways become occupied to near their capacity. It results in extra costs for both passengers and airlines because of the loss of connecting flights or more waiting, more fuel consumption, rescheduling crew members, etc. Hence, devising an appropriate scheduling method that determines a suitable runway and time for each flight in order to efficiently use the hub capacity and minimize the related costs is of great importance. In this paper, we present a mixed-integer zero-one model for scheduling a set of mixed landing and departing flights (despite of most previous studies considered only landings). According to the fact that the flight cost is strongly affected by the level of airline, we consider different airline categories in our model. This model presents a single objective minimizing the total sum of three terms, namely 1) the weighted deviation from targets, 2) the scheduled time of the last flight (i.e., makespan), and 3) the unbalancing the workload on runways. We solve 10 simulated instances of different sizes up to 30 flights and 4 runways. Optimal solutions are obtained in a reasonable time, which are satisfactory in comparison with the traditional rule, namely First- Come-First-Serve (FCFS) that is far apart from optimality in most cases.

Keywords: Arrival and departure scheduling, Airline level, Mixed-integer model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
3411 Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network

Authors: M. Mahdavi, M. Ismail, K. Jumari, Z. M. Hanapi

Abstract:

For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.

Keywords: Wireless sensor networks, energy efficient network, performance analysis, network coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
3410 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldah, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
3409 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao

Abstract:

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
3408 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution

Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil

Abstract:

Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.

Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
3407 Application of ESA in the CAVE Mode Authentication

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung

Abstract:

This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.

Keywords: ESA, CAVE, CDMA, authentication, mobilecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
3406 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
3405 Timetabling Communities’ Demands for an Effective Examination Timetabling Using Integer Linear Programming

Authors: N. F. Jamaluddin, N. A. H. Aizam

Abstract:

This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.

Keywords: Demands, educational timetabling, integer linear programming, scheduling, university examination timetabling problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
3404 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang

Abstract:

The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153
3403 GenCos- Optimal Bidding Strategy Considering Market Power and Transmission Constraints: A Cournot-based Model

Authors: A. Badri

Abstract:

Restructured electricity markets may provide opportunities for producers to exercise market power maintaining prices in excess of competitive levels. In this paper an oligopolistic market is presented that all Generation Companies (GenCos) bid in a Cournot model. Genetic algorithm (GA) is applied to obtain generation scheduling of each GenCo as well as hourly market clearing prices (MCP). In order to consider network constraints a multiperiod framework is presented to simulate market clearing mechanism in which the behaviors of market participants are modelled through piecewise block curves. A mixed integer linear programming (MILP) is employed to solve the problem. Impacts of market clearing process on participants- characteristic and final market prices are presented. Consequently, a novel multi-objective model is addressed for security constrained optimal bidding strategy of GenCos. The capability of price-maker GenCos to alter MCP is evaluated through introducing an effective-supply curve. In addition, the impact of exercising market power on the variation of market characteristics as well as GenCos scheduling is studied.

Keywords: Optimal bidding strategy, Cournot equilibrium, market power, network constraints, market auction mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
3402 A New Algorithm to Stereo Correspondence Using Rank Transform and Morphology Based On Genetic Algorithm

Authors: Razagh Hafezi, Ahmad Keshavarz, Vida Moshfegh

Abstract:

This paper presents a novel algorithm of stereo correspondence with rank transform. In this algorithm we used the genetic algorithm to achieve the accurate disparity map. Genetic algorithms are efficient search methods based on principles of population genetic, i.e. mating, chromosome crossover, gene mutation, and natural selection. Finally morphology is employed to remove the errors and discontinuities.

Keywords: genetic algorithm, morphology, rank transform, stereo correspondence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
3401 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations

Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni

Abstract:

This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.

Keywords: Busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
3400 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
3399 A Constrained Clustering Algorithm for the Classification of Industrial Ores

Authors: Luciano Nieddu, Giuseppe Manfredi

Abstract:

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.

Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
3398 MICOSim: A Simulator for Modelling Economic Scheduling in Grid Computing

Authors: Mohammad Bsoul, Iain Phillips, Chris Hinde

Abstract:

This paper is concerned with the design and implementation of MICOSim, an event-driven simulator written in Java for evaluating the performance of Grid entities (users, brokers and resources) under different scenarios such as varying the numbers of users, resources and brokers and varying their specifications and employed strategies.

Keywords: Grid computing, Economic Scheduling, Simulation, Event-Driven, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
3397 Optimal Manufacturing Scheduling for Dependent Details Processing

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
3396 An Innovative Fuzzy Decision Making Based Genetic Algorithm

Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad

Abstract:

Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.

Keywords: Genetic Algorithm, Fuzzy Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551