Search results for: Rule base.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1127

Search results for: Rule base.

1127 Application of Association Rule Mining in Supplier Selection Criteria

Authors: A. Haery, N. Salmasi, M. Modarres Yazdi, H. Iranmanesh

Abstract:

In this paper the application of rule mining in order to review the effective factors on supplier selection is reviewed in the following three sections 1) criteria selecting and information gathering 2) performing association rule mining 3) validation and constituting rule base. Afterwards a few of applications of rule base is explained. Then, a numerical example is presented and analyzed by Clementine software. Some of extracted rules as well as the results are presented at the end.

Keywords: Association rule mining, data mining, supplierselection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1126 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation

Authors: Ferenc Peter Pach, Janos Abonyi

Abstract:

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1125 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1124 Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule

Authors: P. Jomsri

Abstract:

Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.

Keywords: association rule, information retrieval, research paper bookmarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1123 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1122 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1121 Fuzzy Logic Speed Controller with Reduced Rule Base for Dual PMSM Drives

Authors: Jurifa Mat Lazi, Zulkifilie Ibrahim, Marizan Sulaiman, Fizatul Aini Patakor, Siti Noormiza Mat Isa

Abstract:

Dual motor drives fed by single inverter is purposely designed to reduced size and cost with respect to single motor drives fed by single inverter. Previous researches on dual motor drives only focus on the modulation and the averaging techniques. Only a few of them, study the performance of the drives based on different speed controller other than Proportional and Integrator (PI) controller. This paper presents a detailed comparative study on fuzzy rule-base in Fuzzy Logic speed Controller (FLC) for Dual Permanent Magnet Synchronous Motor (PMSM) drives. Two fuzzy speed controllers which are standard and simplified fuzzy speed controllers are designed and the results are compared and evaluated. The standard fuzzy controller consists of 49 rules while the proposed controller consists of 9 rules determined by selecting the most dominant rules only. Both designs are compared for wide range of speed and the robustness of both controllers over load disturbance changes is tested to demonstrate the effectiveness of the simplified/reduced rulebase.

Keywords: Dual Motor Drives, Fuzzy Logic Speed Controller, Reduced Rule-Base, PMSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
1120 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
1119 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

Authors: Hadi Taghvafard

Abstract:

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1118 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6633
1117 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
1116 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1115 Control and Navigation with Knowledge Bases

Authors: Miloš Šeda, Tomáš Březina

Abstract:

In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.

Keywords: fuzzy controller, fuzzification, rule base, inference, defuzzification, genetic algorithm, neural network, case-based reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1114 Eclectic Rule-Extraction from Support Vector Machines

Authors: Nahla Barakat, Joachim Diederich

Abstract:

Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.

Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1113 Integrated Reasoning Approach for Car Faulty Diagnosis

Authors: Diana M.L. Wong

Abstract:

This paper presents an integrated case based and rule based reasoning method for car faulty diagnosis. The reasoning method is done through extracting the past cases from the Proton Service Center while comparing with the preset rules to deduce a diagnosis/solution to a car service case. New cases will be stored to the knowledge base. The test cases examples illustrate the effectiveness of the proposed integrated reasoning. It has proven accuracy of similar reasoning if carried out by a service advisor from the service center.

Keywords: component; case based reasoning (CBR), rule basedreasoning (RBR), decision support systems, diagnosis tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
1112 Generating Speq Rules based on Automatic Proof of Logical Equivalence

Authors: Katsunori Miura, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

In the Equivalent Transformation (ET) computation model, a program is constructed by the successive accumulation of ET rules. A method by meta-computation by which a correct ET rule is generated has been proposed. Although the method covers a broad range in the generation of ET rules, all important ET rules are not necessarily generated. Generation of more ET rules can be achieved by supplementing generation methods which are specialized for important ET rules. A Specialization-by-Equation (Speq) rule is one of those important rules. A Speq rule describes a procedure in which two variables included in an atom conjunction are equalized due to predicate constraints. In this paper, we propose an algorithm that systematically and recursively generate Speq rules and discuss its effectiveness in the synthesis of ET programs. A Speq rule is generated based on proof of a logical formula consisting of given atom set and dis-equality. The proof is carried out by utilizing some ET rules and the ultimately obtained rules in generating Speq rules.

Keywords: Equivalent transformation, ET rule, Equation of two variables, Rule generation, Specialization-by-Equation rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
1111 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base

Authors: M. Hari Prabhu

Abstract:

This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.

Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
1110 The Effectiveness of National Fiscal Rules in the Asia-Pacific Countries

Authors: Chiung-Ju Huang, Yuan-Hong Ho

Abstract:

This study utilizes the International Monetary Fund (IMF) Fiscal Rules Dataset focusing on four specific fiscal rules such as expenditure rule, revenue rule, budget balance rule, and debt rule and five main characteristics of each fiscal rule those are monitoring, enforcement, coverage, legal basis, and escape clause to construct the Fiscal Rule Index for nine countries in the Asia-Pacific region from 1996 to 2015. After constructing the fiscal rule index for each country, we utilize the Panel Generalized Method of Moments (Panel GMM) by using the constructed fiscal rule index to examine the effectiveness of fiscal rules in reducing procyclicality. Empirical results show that national fiscal rules have a significantly negative impact on procyclicality of government expenditure. Additionally, stricter fiscal rules combined with high government effectiveness are effective in reducing procyclicality of government expenditure. Results of this study indicate that for nine Asia-Pacific countries, policymakers’ use of fiscal rules and government effectiveness to reducing procyclicality of fiscal policy are effective.

Keywords: Counter-cyclical policy, fiscal rules, government effectiveness, procyclical policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
1109 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1108 Linguistic, Pragmatic and Evolutionary Factors in Wason Selection Task

Authors: Olimpia Matarazzo, Fabrizio Ferrara

Abstract:

In two studies we tested the hypothesis that the appropriate linguistic formulation of a deontic rule – i.e. the formulation which clarifies the monadic nature of deontic operators - should produce more correct responses than the conditional formulation in Wason selection task. We tested this assumption by presenting a prescription rule and a prohibition rule in conditional vs. proper deontic formulation. We contrasted this hypothesis with two other hypotheses derived from social contract theory and relevance theory. According to the first theory, a deontic rule expressed in terms of cost-benefit should elicit a cheater detection module, sensible to mental states attributions and thus able to discriminate intentional rule violations from accidental rule violations. We tested this prevision by distinguishing the two types of violations. According to relevance theory, performance in selection task should improve by increasing cognitive effect and decreasing cognitive effort. We tested this prevision by focusing experimental instructions on the rule vs. the action covered by the rule. In study 1, in which 480 undergraduates participated, we tested these predictions through a 2 x 2 x 2 x 2 (type of the rule x rule formulation x type of violation x experimental instructions) between-subjects design. In study 2 – carried out by means of a 2 x 2 (rule formulation x type of violation) between-subjects design - we retested the hypothesis of rule formulation vs. the cheaterdetection hypothesis through a new version of selection task in which intentional vs. accidental rule violations were better discriminated. 240 undergraduates participated in this study. Results corroborate our hypothesis and challenge the contrasting assumptions. However, they show that the conditional formulation of deontic rules produces a lower performance than what is reported in literature.

Keywords: Deontic reasoning; Evolutionary, linguistic, logical, pragmatic factors; Wason selection task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
1107 Optimization of a Triangular Fin with Variable Fin Base Thickness

Authors: Hyung Suk Kang

Abstract:

A triangular fin with variable fin base thickness is analyzed and optimized using a two-dimensional analytical method. The influence of fin base height and fin base thickness on the temperature in the fin is listed. For the fixed fin volumes, the maximum heat loss, the corresponding optimum fin effectiveness, fin base height and fin tip length as a function of the fin base thickness, convection characteristic number and dimensionless fin volume are represented. One of the results shows that the optimum heat loss increases whereas the corresponding optimum fin effectiveness decreases with the increase of fin volume.

Keywords: A triangular fin, Convection characteristic number, Heat loss, Fin base thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4122
1106 Design Method for Knowledge Base Systems in Education Using COKB-ONT

Authors: Nhon Do, Tuyen Trong Tran, Phan Hoai Truong

Abstract:

Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.

Keywords: artificial intelligence, knowledge base systems, ontology, educational software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1105 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining

Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri

Abstract:

This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: Motivation behavior, e-learning, moodle log, association rule mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1104 Study of Base-Isolation Building System

Authors: G. W. Ni, Y. M. Zhang, D. L. Jiang, J. N. Chen, B. Liu

Abstract:

In order to improve the effect of isolation structure, the principles and behaviours of the base-isolation system are studied, and the types and characteristics of the base-isolation are also discussed. Compared to the traditional aseismatic structures, the base isolation structures decrease the seismic response obviously: the total structural aseismatic value decreases to 1/4-1/32 and the seismic shear stress in the upper structure decreases to 1/14-1/23. In the huge seism, the structure can have an obvious aseismatic effect.

Keywords: Base-isolation, earthquake wave, dynamic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
1103 Analysis of DNA Microarray Data using Association Rules: A Selective Study

Authors: M. Anandhavalli Gauthaman

Abstract:

DNA microarrays allow the measurement of expression levels for a large number of genes, perhaps all genes of an organism, within a number of different experimental samples. It is very much important to extract biologically meaningful information from this huge amount of expression data to know the current state of the cell because most cellular processes are regulated by changes in gene expression. Association rule mining techniques are helpful to find association relationship between genes. Numerous association rule mining algorithms have been developed to analyze and associate this huge amount of gene expression data. This paper focuses on some of the popular association rule mining algorithms developed to analyze gene expression data.

Keywords: DNA microarray, gene expression, association rule mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
1102 Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control

Authors: Jan Erik Stellet

Abstract:

This article presents a detailed analysis and comparative performance evaluation of model reference adaptive control systems. In contrast to classical control theory, adaptive control methods allow to deal with time-variant processes. Inspired by the works [1] and [2], two methods based on the MIT rule and Lyapunov rule are applied to a linear first order system. The system is simulated and it is investigated how changes to the adaptation gain affect the system performance. Furthermore, variations in the reference model parameters, that is changing the desired closed-loop behaviour are examinded.

Keywords: Adaptive control systems, Adaptation gain, MIT rule, Lyapunov rule, Model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
1101 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Authors: Reza Moosavi Mohseni, Wenjun Zhang, Jiling Cao

Abstract:

The aim of the present study is to detect the chaotic behavior in monetary economic relevant dynamical system. The study employs three different forms of Taylor rules: current, forward, and backward looking. The result suggests the existence of the chaotic behavior in all three systems. In addition, the results strongly represent that using expectations in policy rule especially rational expectation hypothesis can increase complexity of the system and leads to more chaotic behavior.

Keywords: Chaos theory, GMM estimator, Lyapunov Exponent, Monetary System, Taylor Rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
1100 Cooperative Scheme Using Adjacent Base Stations in Wireless Communication

Authors: Young-Min Ko, Seung-Jun Yu, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In a wireless communication system, the failure of base station can result in a communication disruption in the cell. This paper proposes a way to deal with the failure of base station in a wireless communication system based on OFDM. Cooperative communication of the adjacent base stations can be a solution of the problem. High performance is obtained by the configuration of transmission signals which is applied CDD scheme in the cooperative communication. The Cooperative scheme can be a e ective solution in case of the particular situation.

Keywords: Base station, CDD, OFDM, Diversity gain, MIMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1099 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation

Authors: Noura Al-Ajmi, Mohammed A. Almulla

Abstract:

With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.

Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
1098 Induction of Expressive Rules using the Binary Coding Method

Authors: Seyed R Mousavi

Abstract:

In most rule-induction algorithms, the only operator used against nominal attributes is the equality operator =. In this paper, we first propose the use of the inequality operator, , in addition to the equality operator, to increase the expressiveness of induced rules. Then, we present a new method, Binary Coding, which can be used along with an arbitrary rule-induction algorithm to make use of the inequality operator without any need to change the algorithm. Experimental results suggest that the Binary Coding method is promising enough for further investigation, especially in cases where the minimum number of rules is desirable.

Keywords: Data mining, Inequality operator, Number of rules, Rule-induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255