
Analysis of DNA Microarray Data using

Association Rules: A Selective Study

M. Anandhavalli Gauthaman

Abstract—DNA microarrays allow the measurement of

expression levels for a large number of genes, perhaps all genes of an

organism, within a number of different experimental samples. It is

very much important to extract biologically meaningful information

from this huge amount of expression data to know the current state of

the cell because most cellular processes are regulated by changes in

gene expression. Association rule mining techniques are helpful to

find association relationship between genes. Numerous association

rule mining algorithms have been developed to analyze and associate

this huge amount of gene expression data. This paper focuses on

some of the popular association rule mining algorithms developed to

analyze gene expression data.

Keywords—DNA Microarray, Gene expression, Association rule

mining.

I. INTRODUCTION

ENE is a segment of DNA, which contains the formula

for the chemical composition of one particular protein.

Genes serve as the blueprints for proteins and some additional

products, and mRNA is the first intermediate during the

production of any genetically encoded molecule. The

concentration of a specific mRNA molecule is usually called

the expression level of the respective gene, and it serves as an

indicator of the amount of end product that is currently being

produced. Nowadays, the expression levels of thousands of

genes, possibly all genes in an organism, can be measured

simultaneously in a single experiment using microarrays. This

new technology gives rise to a challenge: to interpret the

meaning of this immense amount of biological information

formatted in numerical matrices. To meet the challenge,

various methods have been developed using both traditional

and innovative techniques to extract, analyze and visualize

gene expression data generated from DNA microarrays. A

key step in the analysis of gene expression data is to find

association and correlation relationship between gene

expression patterns.

II. MICROARRAY TECHNOLOGY

Microarray is a technology which enables the researchers to

investigate and address issues which were once thought to be

non traceable. Microarray technology has empowered the

M. Anandhavalli Gauthaman is with Department of Computer Science &

Engineering, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East

Sikkim-737132, India (e-mail: anandhigautham@gmail.com).

scientific community to understand the fundamental aspects

underlining the growth and development of life as well as to

explore the genetic causes of anomalies occurring in the

functioning of the human body.

The basic principle underlying microarray technology is

that complementary nucleic acids will hybridize. This is also

the basis for traditional gene expression analyses, such as

Southern and Northern blotting. Hybridization provides

exquisite selectivity of complementary stranded nucleic acids,

with high sensitivity and specificity. In the traditional

techniques, in which radioactive labeling materials are usually

used, the simultaneous hybridization of test and reference

samples is impossible.

III. DNA MICROARRAY EXPERIMENT

A DNA chip is the instrument that measures simultaneously

the concentration of thousands of mRNA molecules. It also

refers to as a DNA microarray. They can measure

simultaneously the expression levels of up to 20,000 genes.

The DNA microarrays are produced as follows:

Divide a glass or silica plate of 1 cm across (the chip) into

pixels. Here each pixel will be dedicated to one gene. Millions

of 25 base pair long single strand DNA, copied from a

particular segment of gene, is synthesized on the dedicated

pixel. These are called probs. The mRNA molecules are

extracted from the cell taken from tissue of interest (such as

cancer tissue). They are reverse transcribed from RNA to

DNA and their concentration is enhanced. Then the resulting

DNA is transcribed back into fluorescently marked single

strand RNA. The solution of marked and mRNA molecules

(copies of the mRNA molecules that were originally extracted

from the tissue) is placed on the chip and labeled RNA diffuse

over the dense forest of single strand DNA probes. When such

an mRNA encounters a bit of the probe, of which the RNA is

the perfect copy, it attaches to it with high affinity which is

called hybridization. After the mRNA solution is washed off,

only those molecules that found their perfect match remain

fixed to the chip. Now the chip is illuminated with a laser, and

those fixed targets fluoresce. By measuring the light radiating

from each pixel, one obtains a measure of targets that stuck. It

is proportional to the concentration of those mRNA in the

investigated tissue.

G

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1780International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
8.

pd
f

Fig. 1 DNA Microarray Experiment

IV. GENE EXPRESSION DATA

A typical DNA microarray experiment provides the

expression profiles of several tens of samples (say Ns % 100),

over several thousand (Ng) genes. These results are

summarized in an Ng×Ns expression table; each row

corresponds to one particular gene and each column to a

sample. Entry Egs of such an expression table stands for the

expression level of gene g in sample s. The original gene

expression matrix obtained from a scanning process contains

noise, missing values, and systematic variations arising from

the experimental procedure. Data pre-processing is

indispensable before any association rules analysis can be

performed.

A. Analysis of Gene Expression Data

Analysis of gene expression data helps the molecular

biologists in many aspects, like, gathering information about

different cell states, functioning of genes, identifying genes

that reflect biological process of interest etc. Several obvious

meanings of gene expression data analysis are the following:

Identify genes whose expression levels reflect biological

processes of interest (such as development of cancers).

Group the tumors into classes that can be differentiated on

the basis of their expression profiles, possibly in a way

that can be interpreted in terms of clinical classification. If

one can partition tumors, on the basis of their expression

levels into relevant classes (such as e.g. positive vs.

negative responders to a particular treatment), the

classification obtained from expression analysis can be

used as a diagnostic and therapeutic tool.

Finally the analysis can provide clues and guesses for the

function of genes (proteins) of yet unknown role.

V. ASSOCIATION RULES

Association rule mining finds interesting association and

correlation relationships among a large set of data items [8].

The rules are considered interesting if they satisfy both a

minimum support threshold and minimum confidence

threshold [3]. The most common approach to finding

association rules is to break up the problem into two parts [6].

1. Find frequent item sets: By definition, each of these item

sets will occur at least as frequently as a pre-determined

minimum support count [8].

2. Generate strong association rules from the frequent item

sets: By definition, these rules must satisfy minimum support

and minimum confidence [8].

The second step is easier of the two. The overall

performance of mining association rules is determined by the

first step. As shown in [2], the performance, for large

databases, is most influenced by the combinatorial explosion

of the number of possible frequent itemsets that must be

considered and also by the number of database scans that has

to be performed. Many conventional association rule mining

algorithms (such as A priori [1], FP-growth [2], DynFP-

growth [11], Partitioning (Savasere et al., 1999), Dynamic

Item set counting (DIC) (Aggarwal, 1998), Direct Hashing

and Pruning DHP (Park et al., 1995) etc.) have been adapted

or directly applied to gene expression data These association

rules mining algorithms have been proven useful for

identifying biologically relevant association among the genes.

A. Importance of association rule mining Techniques in
Gene Expression

Using association rule mining approach, we can analyze:

1.The expression of one gene leads to the induction of a serial

of target gene expressions. This expression pattern is denoted

regulation of gene expression. The relationship between one

gene and the other target genes can be viewed as an

associative relation. 2. Several gene expressions lead to the

expression of one target gene. Transcription factors and their

target gene is one of many examples in this category

(Morishita, 1999). 3. Gene expression leads to the induction of

new biological function (Nakaya et al., 2000).

VI. ASSOCIATION RULES MINING ALGORITHMS USED IN GENE

EXPRESSION DATA

In this section some of the popular association rule mining

techniques used to find the association relationship between

gene expression data are reviewed. There are several

association rule mining algorithms on gene expression

analysis. But in this paper only a few numbers of them are

briefly discussed.

A. Apriori

Apriori algorithm (Agrrawal and Srikant 1994) used prior

knowledge of frequent itemset properties for mining frequent

itemsets for Boolean association rules. It employs an iterative

approach known as a level-wise search, where k-itemsets are

used to explore (k+1) items. The first pass of the algorithm

simply counts item occurrences to determine the large 1-

itemsets. A subsequent pass, say pass k, consists of two

phases. First, the large itemsets Lk-1 found in the (k-1)th pass

are used to generate the candidate itemsets Ck, using the

Apriori candidate generation function . Next the database is

scanned and the support of the candidates in Ck is counted. For

fast counting, an efficient determination if the candidates in Ck

that are contained in a given transaction t is needed. A hash

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1781International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
8.

pd
f

tree structure [12] is used for this purpose. The Apriori-gen

function takes as argument Lk-1, the set of all large (k-1)

itemsets. It returns a superset of the set of all large k-itemsets

and is described in [12]. If the dataset is huge, the multiple

database scan makes the execution of the Apriori algorithm

very long. Therefore several algorithms were developed to

speed up the Apriori algorithm. These improved algorithms

reduce the I/O cost in different ways. This is a level-wise

algorithm thus it accesses the database (DB) as many times as

the length of the frequent itemset.

B. FP growth

FP-tree growth (Han et al.) adopts a divide-and-conquer

strategy that mines the complete set of frequent itemsets

without candidate generation. FP-growth algorithm constructs

the conditional frequent pattern (FP)-tree and performs the

mining on this tree. FP-tree is an extended prefix tree

structure, storing crucial and quantitative information about

frequent sets. The tree nodes are frequent items and are

arranged in a such a way that more frequently occurring nodes

will have better chances of sharing nodes than the less

frequently occurring ones. The method starts from frequent 1-

itemsets as an initial suffix pattern and examines only its

conditional pattern base (a subset of the database), which

consists of set of frequent items co-occurring with the suffix

pattern. The algorithm involves two phases. In phase I, it

constructs the FP-tree with respect to a given support factor .

The construction of this tree requires two passes over the

whole database. In phase II, the algorithm dose not use the

transaction database anymore, but it uses the FP-tree.

Interestingly, the FP-tree contains all the information about

frequent itemsets with respect to the given . The FP-tree

growth method transforms the problem of finding long

frequent patterns to searching for shorter ones recursively and

then concatenating the suffix. It uses the least frequent items

as a suffix, offering good selectivity. The method substantially

reduces the search costs [2].

When the database is large, it is sometimes unrealistic to

construct a main memory-base FP-tree. A study on the

performance of the F-method shows that it is efficient and

scalable for mining both long and short frequent patterns.

C. DynFP-growth

An interesting alternative to the FP-growth is Dynamic

Frequent Pattern algorithm (Gyorodi C et al). In FP-growth,

some observations on the way FP-tree constructed a) the

resulting FP-tree is not unique for the same “logical” database

b) the process needs two complete scans of the database. A

solution to these observations were given by Gyorodi C., et al

(2003) [11], for first observation by using a support

descending order together with the lexicographic order

ensuring in this way the uniqueness of the resulting FP-tree for

different “logically equivalent” databases and for the second

observation by devising a dynamic FP-tree reordering

algorithm and employing this algorithm whenever a

“promotion” to a higher order of at least one item is detected.

Although the resulting FP-tree could be too large to be stored

in its entirety in the main memory, because of its properties,

and for a relatively high number of queries with different

minimum supports, it would be more practical, form time

consuming point of view, to it on disk in its full form and

using only the portions that are required from it. Using the

dynamic reordering one doesn’t have to rebuild the FP-tree

even if the actual database is updated. In this case the

algorithm has to be performed taking into consideration only

the new transactions and the stored FP-tree. This approach can

provide a very quick response to any queries even on

databases that are being continuously updated fact that is true

in many cases. Because the dynamic reordering process,

Gyorodi C., et al (2003) [11] proposed a modification of the

original structures, by replacing the singly linked list with a

doubly linked list for linking the tree nodes to the header and

adding a master-table to the same header. All these

modifications are presented in more details in [11].

It can be observed that the execution time of DynFP-growth

does not depend on support but only on the database size, this

is because the tree construction technique does not need the

support information. In this way the tree will contain all the

database transactions and depending on the required support

the results will be refined so that they will contain only the

itemsets that have their frequency greater than the required

support.

D. Partition

Partition algorithm (Savasere [SON95], 1995) is based on

the observation that the frequent sets are normally very few in

number to the set of all itemsets. As a result, it divides the

database into partitions such that each partition can be placed

into main memory. This algorithm reduces the number of

database scans to two and when it scans the database it brings

that partition into memory and counts the items in that

partition alone. The algorithm executes in two phases. In the

first phase, it logically divides the data base into a number of

non-overlapping partitions. The partitions are considered one

at a time and all frequent itemsets for that partition are

generated. Thus if there are n partitions, Phase I of the

algorithm takes n iterations. At the end of phase I, these

frequent itemsets are merged to generate the set of all potential

frequent itemsets. In this step, the local frequent itemsets of

same lengths from all n partitions are combined to generate

the global candidate itemsets. In phase II, the actual support of

these itemsets is generated and the frequent itemsets are

identified. That is, during the first database scan, it finds all

frequent itemsets in each partition. During the second scan,

only those itemsets that are frequent in at least in one partition

are used as candidates and counted to determine if they are

large across the entire database.

These algorithms may be able to adopt better to limited

main memory. In addition, it would be expected that the

number of itemsets to be counted per partition would be

smaller than those need for the entire database. Incremental

generation of association rules may be easier to perform by

treating the current state of the database as one partition and

treating the new entries as a second partition.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1782International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
8.

pd
f

If the itemsets are uniformly distributed across the

partitions, then a large fraction of the itemsets will be large.

However, if the data are not uniform, there may be a large

percentage of false itemsets.

E. Dynamic Itemset Counting (DIC)

The basic idea of DIC algorithm (Brin et al. in 1997) is to

generate new candidates as early as possible. It scans the

database and increments the counters of the candidates when

an itemset became frequent so it is possible to generate new

candidates based on the new frequent itemset. The candidate

generation is a complex task; therefore the new candidates are

generated only at checkpoints. The distance of the checkpoints

is an important in this algorithm; the optimum is reached at

about 10,000 read transactions as described in [4]. It tries to

reduce the I/O cost via early candidate generation. The

working mechanism of DIC is as follows:

1. Mark empty set with a solid box. All the 1 – itemset are

marked with dashed circles & others unmarked.

2. Read M transactions. For each transaction increment the

counter marked with dashes.

3. If a dashed circle count exceeds threshold, turn it into a

dashed square. If any of the superset has all its subsets as

solid or dashed square add counter and make dashed

circle to superset.

4. If a dashed itemset has been counted thro’ all transactions

make it solid & stop counting.

5. If end of file then rewind to beginning.

6. If any more dashed items then goto step 2.

The number of passes is less in DIC if the data is

homogenous. Because of its dynamic nature, it is flexible and

can be adapted to parallel and incremental mining.

VII. CONCLUSION

Microarrays have become a standard research tool for

today’s laboratory. Microarray analysis has been used

successfully to define transcriptional signatures to allow for

patient-tailored therapy strategy in breast cancer or to classify

better tumors having no histological counterparts in normal

tissues. It can be a useful tool to identify genes directly

activated or repressed by expression of a transcription factor.

Subsequently, primary response genes can be identified by

computational searching of factor-specific responsive

elements in a DNA region located upstream of genes found to

be differentially expressed in microarray experiments. But, all

these things and possibilities depend on efficient and proper

analysis of gene expression data.

Basically, data mining is an application-dependent issue and

different applications may require different mining techniques

to copy up with. To apply mining association rules in gene

expression pattern analysis, we need to understand the

properties of gene data. The data in gene expression database

are very large, and are divided into different tissues or organs.

Most genes are duplicated in different tissues. To study the

associations between genes, we need to eliminate these

duplicated data since they are present in every tissue. Thus to

apply an existing algorithms to the gene analysis, we will need

to modify it to filter the data. Also, we have to consider the

negative implication of the results. Furthermore, unlike data

mining in business applications, the size of a transaction in

gene analysis is relatively small since the number of tissues

present in an organism (e.g. human tissues) is limited.

However, the number of items (genes) in one single

transaction is very large. When we select an algorithm to

facilitate this analysis, the number of passes is not a major

factor to be considered

From the above study first of all, the FP-growth algorithm

needs at most two scans of the database, while the number of

database scans for Apriori increases with the dimension of the

candidate itemsets. Also, the performance of the FP-growth is

not influenced by the support factor, while the performance of

the Apriori algorithm decreases with the support factor.

Thus, the candidate generating algorithms (derived from

Apriori) behave well only for small databases (max.50, 000

transactions) with a large support factor (at least 30%). In

other cases the algorithm without candidate generation

DynFP-growth and FP-growth much better. DIC algorithm

considerably faster than Apriori which must make as many

passes as the maximum size of the candidate itemsets but it is

sensitive to the homogenous data and depends on the data

location.

From the above study we have seen that there is no such

single association rule mining algorithm that can able to

handle all the issues like requirement of domain knowledge,

large data sets, large dimensionality, different types of data

efficiently and filtering of duplicate data removal. When the

size of the data set is small to medium and its dimensionality

is low, then there are a sufficient number of algorithms that

achieve good and fast association rules.

Nevertheless when the size of data set is vary large, it has

many dimensions and a high level of duplication of data

itemsets then no good and fast algorithm exists. Lately there

are some algorithms that try to issue these problems with

promising ideas and results, but still a general solution is far

away. A solution is further hardened by the fact that most

association rule mining algorithms are sensitive to their input

parameters. For different data sets different input parameter

settings will give a satisfactory result. Finding the correct one

is not at all an easy task.

ACKNOWLEDGEMENT

This work has been carried out as part of Research

Promotion Scheme (RPS) Project under AICTE, India.

REFERENCES

[1] R.Agrawal, R.Srikant, “Fast algorithms for mining association rules in

large databases”. Proc. of 20th Int’l conf. on VLDB: 487-499, 1994.

[2] J.Han, J.Pei, Y.Yin, “Mining Frequent Patterns without candidate

generation”. Proc. Of ACM-SIGMOD, 2000.

[3] C.Gyorodi, R.Gyorodi. “Mining Association rules in Large Databases”.

Proc. of Oradea EMES’02: 45-50, Oradea, Romania, 2002.

[4] S.Brin, R.Motawani, J.D.Ullman and S. Tsur, “Dynamic Itemset

counting and implication rules for market basket data” in Proc. of the

ACM SIGMOD Intl’l Conf. on Management of data, Tucson, Arizona,

USA, 1997, pp. 255-264.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1783International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
8.

pd
f

[5] Aggarwal, Charu, Yu, Philip: Bulletin of the IEEE Technical Committee

on Data Engineering, Vol 21, No.1, Page 23-31, March 1998.

[6] M.H. Dunham. “Data Mining – Introductory and Advanced Topics”.

Prentice Hall, 2003, ISBN 0-13-088892-3.

[7] Morishita, Shinichi, Hishiki, eruyoshi and Okubo, Kousaku: Proc. 1999

ACM SIGMOD Workshop on Research Issues in Data Mining and

Knowledge Discovery (DMKD), pages 21-25, June 1999.

[8] J. Han M.Kamber, “Data Mining Concepts and Techniques”. Morgan

Kaufmann Publishers, San Francisco, USA, 2001, ISBN 1558604898.

[9] Nayaka, Akihiro, Hishigaki, Harutsugu and Morishita, Shinichi: In Proc.

of Pacific Symposium on Biocomputing, pages 367-379, January 4-9,

2000.

[10] Park, J-S., Chen, M-S., and Yu P.S: Proc. ACM SIGMOD, May 1995,

pp.175-186.

[11] C.Gyorodi, R.Gyorodi, T.Cofeey & S.Holban – “Mining association

rules using Dynamic FP-Trees” – in Proc. of The Irish signal and

Systems Conference, University of Limerick, Limerick, Ireland, 30th

June- 2nd July 2003, ISBN 0-9542973-1-8, page 76-82.

[12] R.Agrawal, T.Imielinki and A.Swami, “Mining association rules

between set of item of large databases” in Proc. Of the ACM SIGMOD

Intl’l Conf. on Management of data, Washington, D.C.,USA, 1993, pp

207-216.

TABLE I

COMPARISON TABLE

Apriori FP growth Dyn-FP

growth

Partition DIC

Category Level wise

iterative

method

Two-phase mining

(Divide and

conquer) method

Two-phase

mining

(Divide and

conquer)

method

Level wise

iterative

method

Level wise

iterative

method

User-defined

Parameter

L and

support

factor ()

Set of transactions

D and and FP-

tree

Set of

transactions

D and

L , and

Partitions of

database

transactions

Set of itemsets

and

Candidate

generation

Yes No No Yes Yes

Completeness of

patterns to be

mined

Complete

set of

Frequent

patterns

Complete set of

Frequent patterns

Complete set

of

Frequent

patterns

Complete set

of

Frequent

patterns

Complete set of

Frequent patterns

Kinds of

patterns to be

mined

Frequent

patterns

Frequent patterns FP-tree Frequent

patterns

Frequent patterns

Scans Number of

items (m) +1

2 2 2 2

Data structure

used

Hash tree Frequent Pattern

Tree

Dynamic

frequent

Pattern Tree

Hash table Hash tree

Kinds of rules to

be mined

Association

rules

Association rules Association

rules

Association

rules

Association rules

Types of values

handled in the

rule

Numerical Numerical Numerical Numerical Numerical

Limitation Large

number of

DB scans

Needs a large

amount of memory.

Execution

time depends

on DB size

and not on

support factor

If data are not

uniform, large

% of false

itemsets

Sensitive to

homogenous data

and dependence

on the data

location

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1784International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
8.

pd
f

