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Abstract—DNA microarrays allow the measurement of 

expression levels for a large number of genes, perhaps all genes of an 

organism, within a number of different experimental samples. It is 

very much important to extract biologically meaningful information 

from this huge amount of expression data to know the current state of 

the cell because most cellular processes are regulated by changes in 

gene expression. Association rule mining techniques are helpful to 

find association relationship between genes.  Numerous association 

rule mining algorithms have been developed to analyze and associate 

this huge amount of gene expression data. This paper focuses on 

some of the popular association rule mining algorithms developed to 

analyze gene expression data. 

Keywords—DNA Microarray, Gene expression, Association rule 

mining.  

I. INTRODUCTION

ENE is a segment of DNA, which contains the formula 

for the chemical composition of one particular protein. 

Genes serve as the blueprints for proteins and some additional 

products, and mRNA is the first intermediate during the 

production of any genetically encoded molecule. The 

concentration of a specific mRNA molecule is usually called 

the expression level of the respective gene, and it serves as an 

indicator of the amount of end product that is currently being 

produced. Nowadays, the expression levels of thousands of 

genes, possibly all genes in an organism, can be measured 

simultaneously in a single experiment using microarrays. This 

new technology gives rise to a challenge: to interpret the 

meaning of this immense amount of biological information 

formatted in numerical matrices. To meet the challenge, 

various methods have been developed using both traditional 

and innovative techniques to extract, analyze and visualize 

gene expression data generated from DNA microarrays. A 

key step in the analysis of gene expression data is to find 

association and correlation relationship between gene 

expression patterns.  

II. MICROARRAY TECHNOLOGY

Microarray is a technology which enables the researchers to 

investigate and address issues which were once thought to be 

non traceable. Microarray technology has empowered the  
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scientific community to understand the fundamental aspects 

underlining the growth and development of life as well as to 

explore the genetic causes of anomalies occurring in the 

functioning of the human body. 

The basic principle underlying microarray technology is 

that complementary nucleic acids will hybridize. This is also 

the basis for traditional gene expression analyses, such as 

Southern and Northern blotting. Hybridization provides 

exquisite selectivity of complementary stranded nucleic acids, 

with high sensitivity and specificity. In the traditional 

techniques, in which radioactive labeling materials are usually 

used, the simultaneous hybridization of test and reference 

samples is impossible. 

III. DNA MICROARRAY EXPERIMENT

A DNA chip is the instrument that measures simultaneously 

the concentration of thousands of mRNA molecules. It also 

refers to as a DNA microarray. They can measure 

simultaneously the expression levels of up to 20,000 genes.       

The DNA microarrays are produced as follows: 

Divide a glass or silica plate of 1 cm across (the chip) into 

pixels. Here each pixel will be dedicated to one gene. Millions 

of 25 base pair long single strand DNA, copied from a 

particular segment of gene, is synthesized on the dedicated 

pixel. These are called probs. The mRNA molecules are 

extracted from the cell taken from tissue of interest (such as 

cancer tissue). They are reverse transcribed from RNA to 

DNA and their concentration is enhanced. Then the resulting 

DNA is transcribed back into fluorescently marked single 

strand RNA. The solution of marked and mRNA molecules 

(copies of the mRNA molecules that were originally extracted 

from the tissue) is placed on the chip and labeled RNA diffuse 

over the dense forest of single strand DNA probes. When such 

an mRNA encounters a bit of the probe, of which the RNA is 

the perfect copy, it attaches to it with high affinity which is 

called hybridization. After the mRNA solution is washed off, 

only those molecules that found their perfect match remain 

fixed to the chip. Now the chip is illuminated with a laser, and 

those fixed targets fluoresce. By measuring the light radiating 

from each pixel, one obtains a measure of targets that stuck. It 

is proportional to the concentration of those mRNA in the 

investigated tissue. 

G
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Fig. 1 DNA Microarray Experiment 

IV. GENE EXPRESSION DATA

A typical DNA microarray experiment provides the 

expression profiles of several tens of samples (say Ns % 100), 

over several thousand (Ng) genes. These results are 

summarized in an Ng×Ns expression table; each row 

corresponds to one particular gene and each column to a 

sample. Entry Egs of such an expression table stands for the 

expression level of gene g in sample s.  The original gene 

expression matrix obtained from a scanning process contains 

noise, missing values, and systematic variations arising from 

the experimental procedure. Data pre-processing is 

indispensable before any association rules analysis can be 

performed. 

A.   Analysis of Gene Expression Data 

Analysis of gene expression data helps the molecular 

biologists in many aspects, like, gathering information about 

different cell states, functioning of genes, identifying genes 

that reflect biological process of interest etc. Several obvious 

meanings of gene expression data analysis are the following: 

Identify genes whose expression levels reflect biological 

processes of interest (such as development of cancers). 

Group the tumors into classes that can be differentiated on 

the basis of their expression profiles, possibly in a way 

that can be interpreted in terms of clinical classification. If 

one can partition tumors, on the basis of their expression 

levels into relevant classes (such as e.g. positive vs. 

negative responders to a particular treatment), the 

classification obtained from expression analysis can be 

used as a diagnostic and therapeutic tool. 

Finally the analysis can provide clues and guesses for the 

function of genes (proteins) of yet unknown role.  

V. ASSOCIATION RULES

Association rule mining finds interesting association and 

correlation relationships among a large set of data items [8]. 

The rules are considered interesting if they satisfy both a 

minimum support threshold and minimum confidence 

threshold [3]. The most common approach to finding 

association rules is to break up the problem into two parts [6]. 

1. Find frequent item sets: By definition, each of these item 

sets will occur at least as frequently as a pre-determined 

minimum support count [8]. 

2. Generate strong association rules from the frequent item 

sets: By definition, these rules must satisfy minimum support 

and minimum confidence [8]. 

The second step is easier of the two. The overall 

performance of mining association rules is determined by the 

first step. As shown in [2], the performance, for large 

databases, is most influenced by the combinatorial explosion 

of the number of possible frequent itemsets that must be 

considered and also by the number of database scans that has 

to be performed.  Many conventional association rule mining 

algorithms (such as A priori [1], FP-growth [2], DynFP-

growth [11], Partitioning (Savasere et al., 1999), Dynamic 

Item set counting (DIC) (Aggarwal, 1998), Direct Hashing 

and Pruning DHP (Park et al., 1995) etc.) have been adapted 

or directly applied to gene expression data These association 

rules mining algorithms have been proven useful for 

identifying biologically relevant association among the genes.     

A. Importance of association rule mining Techniques in 
Gene Expression 

Using association rule mining approach, we can analyze: 

1.The expression of one gene leads to the induction of a serial 

of target gene expressions. This expression pattern is denoted 

regulation of gene expression. The relationship between one 

gene and the other target genes can be viewed as an 

associative relation. 2. Several gene expressions lead to the 

expression of one target gene. Transcription factors and their 

target gene is one of many examples in this category 

(Morishita, 1999). 3. Gene expression leads to the induction of 

new biological function (Nakaya et al., 2000). 

VI. ASSOCIATION RULES MINING ALGORITHMS USED IN GENE 

EXPRESSION DATA

In this section some of the popular association rule mining 

techniques used to find the association relationship between 

gene expression data are reviewed. There are several 

association rule mining algorithms on gene expression 

analysis. But in this paper only a few numbers of them are 

briefly discussed.   

A.  Apriori 

Apriori algorithm (Agrrawal and Srikant 1994) used prior 

knowledge of frequent itemset properties for mining frequent 

itemsets for Boolean association rules. It employs an iterative 

approach known as a level-wise search, where k-itemsets are 

used to explore (k+1) items. The first pass of the algorithm 

simply counts item occurrences to determine the large 1-

itemsets. A subsequent pass, say pass k, consists of two 

phases. First, the large itemsets Lk-1 found in the (k-1)th pass 

are used to generate the candidate itemsets Ck, using the 

Apriori candidate generation function . Next the database is 

scanned and the support of the candidates in Ck is counted. For 

fast counting, an efficient determination if the candidates in Ck

that are contained in a given transaction t is needed. A hash 
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tree structure [12] is used for this purpose. The Apriori-gen 

function takes as argument Lk-1, the set of all large (k-1) 

itemsets. It returns a superset of the set of all large k-itemsets 

and is described in [12]. If the dataset is huge, the multiple 

database scan makes the execution of the Apriori algorithm 

very long. Therefore several algorithms were developed to 

speed up the Apriori algorithm. These improved algorithms 

reduce the I/O cost in different ways. This is a level-wise 

algorithm thus it accesses the database (DB) as many times as 

the length of the frequent itemset.  

B.  FP growth  

FP-tree growth (Han et al.) adopts a divide-and-conquer 

strategy that mines the complete set of frequent itemsets 

without candidate generation. FP-growth algorithm constructs 

the conditional frequent pattern (FP)-tree and performs the 

mining on this tree. FP-tree is an extended prefix tree 

structure, storing crucial and quantitative information about 

frequent sets. The tree nodes are frequent items and are 

arranged in a such a way that more frequently occurring nodes 

will have better chances of sharing nodes than the less 

frequently occurring ones. The method starts from frequent 1-

itemsets as an initial suffix pattern and examines only its 

conditional pattern base (a subset of the database), which 

consists of set of frequent items co-occurring with the suffix 

pattern. The algorithm involves two phases. In phase I, it 

constructs the FP-tree with respect to a given support factor .

The construction of this tree requires two passes over the 

whole database. In phase II, the algorithm dose not use the 

transaction database anymore, but it uses the FP-tree. 

Interestingly, the FP-tree contains all the information about 

frequent itemsets with respect to the given . The FP-tree 

growth method transforms the problem of finding long 

frequent patterns to searching for shorter ones recursively and 

then concatenating the suffix. It uses the least frequent items 

as a suffix, offering good selectivity. The method substantially 

reduces the search costs [2].  

When the database is large, it is sometimes unrealistic to 

construct a main memory-base FP-tree. A study on the 

performance of the F-method shows that it is efficient and 

scalable for mining both long and short frequent patterns. 

C.  DynFP-growth  

An interesting alternative to the FP-growth is Dynamic 

Frequent Pattern algorithm (Gyorodi C et al). In FP-growth, 

some observations on the way FP-tree constructed a) the 

resulting FP-tree is not unique for the same “logical” database 

b) the process needs two complete scans of the database. A 

solution to these observations were given by Gyorodi C., et al 

(2003) [11], for first observation by using a support 

descending order together with the lexicographic order 

ensuring in this way the uniqueness of the resulting FP-tree for 

different “logically equivalent” databases and for the second 

observation by devising a dynamic FP-tree reordering 

algorithm and employing this algorithm whenever a 

“promotion” to a higher order of at least one item is detected. 

Although the resulting FP-tree could be too large to be stored 

in its entirety in the main memory, because of its properties, 

and for a relatively high number of queries with different 

minimum supports, it would be more practical, form time 

consuming point of view, to it on disk in its full form and 

using only the portions that are required from it. Using the 

dynamic reordering one doesn’t have to rebuild the FP-tree 

even if the actual database is updated. In this case the 

algorithm has to be performed taking into consideration only 

the new transactions and the stored FP-tree. This approach can 

provide a very quick response to any queries even on 

databases that are being continuously updated fact that is true 

in many cases. Because the dynamic reordering process, 

Gyorodi C., et al (2003) [11] proposed a modification of the 

original structures, by replacing the singly linked list with a 

doubly linked list for linking the tree nodes to the header and 

adding a master-table to the same header. All these 

modifications are presented in more details in [11]. 

It can be observed that the execution time of DynFP-growth 

does not depend on support but only on the database size, this 

is because the tree construction technique does not need the 

support information. In this way the tree will contain all the 

database transactions and depending on the required support 

the results will be refined so that they will contain only the 

itemsets that have their frequency greater than the required 

support. 

D.  Partition 

Partition algorithm (Savasere [SON95], 1995) is based on 

the observation that the frequent sets are normally very few in 

number to the set of all itemsets. As a result, it divides the 

database into partitions such that each partition can be placed 

into main memory. This algorithm reduces the number of 

database scans to two and when it scans the database it brings 

that partition into memory and counts the items in that 

partition alone. The algorithm executes in two phases. In the 

first phase, it logically divides the data base into a number of 

non-overlapping partitions. The partitions are considered one 

at a time and all frequent itemsets for that partition are 

generated. Thus if there are n partitions, Phase I of the 

algorithm takes n iterations. At the end of phase I, these 

frequent itemsets are merged to generate the set of all potential 

frequent itemsets. In this step, the local frequent itemsets of 

same lengths from all n partitions are combined to generate 

the global candidate itemsets. In phase II, the actual support of 

these itemsets is generated and the frequent itemsets are 

identified. That is, during the first database scan, it finds all 

frequent itemsets in each partition. During the second scan, 

only those itemsets that are frequent in at least in one partition 

are used as candidates and counted to determine if they are 

large across the entire database.   

These algorithms may be able to adopt better to limited 

main memory. In addition, it would be expected that the 

number of itemsets to be counted per partition would be 

smaller than those need for the entire database. Incremental 

generation of association rules may be easier to perform by 

treating the current state of the database as one partition and 

treating the new entries as a second partition. 
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If the itemsets are uniformly distributed across the 

partitions, then a large fraction of the itemsets will be large. 

However, if the data are not uniform, there may be a large 

percentage of false itemsets. 

E.  Dynamic Itemset Counting (DIC) 

The basic idea of DIC algorithm (Brin et al. in 1997) is to 

generate new candidates as early as possible. It scans the 

database and increments the counters of the candidates when 

an itemset became frequent so it is possible to generate new 

candidates based on the new frequent itemset. The candidate 

generation is a complex task; therefore the new candidates are 

generated only at checkpoints. The distance of the checkpoints 

is an important in this algorithm; the optimum is reached at 

about 10,000 read transactions as described in [4]. It tries to 

reduce the I/O cost via early candidate generation. The 

working mechanism of DIC is as follows: 

1. Mark empty set with a solid box. All the 1 – itemset are     

marked with dashed circles & others unmarked. 

2. Read M transactions. For each transaction increment the     

counter marked with dashes. 

3. If a dashed circle count exceeds threshold, turn it into a    

dashed square. If any of the superset has all its subsets as    

solid or dashed square add counter and make dashed 

circle to superset. 

4. If a dashed itemset has been counted thro’ all transactions     

make it solid & stop counting. 

5. If end of file then rewind to beginning. 

6. If any more dashed items then goto step 2. 

The number of passes is less in DIC if the data is 

homogenous. Because of its dynamic nature, it is flexible and 

can be adapted to parallel and incremental mining. 

VII. CONCLUSION

Microarrays have become a standard research tool for 

today’s laboratory. Microarray analysis has been used 

successfully to define transcriptional signatures to allow for 

patient-tailored therapy strategy in breast cancer or to classify 

better tumors having no histological counterparts in normal 

tissues. It can be a useful tool to identify genes directly 

activated or repressed by expression of a transcription factor. 

Subsequently, primary response genes can be identified by 

computational searching of factor-specific responsive 

elements in a DNA region located upstream of genes found to 

be differentially expressed in microarray experiments. But, all 

these things and possibilities depend on efficient and proper 

analysis of gene expression data.  

Basically, data mining is an application-dependent issue and 

different applications may require different mining techniques 

to copy up with. To apply mining association rules in gene 

expression pattern analysis, we need to understand the 

properties of gene data. The data in gene expression database 

are very large, and are divided into different tissues or organs. 

Most genes are duplicated in different tissues. To study the 

associations between genes, we need to eliminate these 

duplicated data since they are present in every tissue. Thus to 

apply an existing algorithms to the gene analysis, we will need 

to modify it to filter the data. Also, we have to consider the 

negative implication of the results. Furthermore, unlike data 

mining in business applications, the size of a transaction in 

gene analysis is relatively small since the number of tissues 

present in an organism (e.g. human tissues) is limited. 

However, the number of items (genes) in one single 

transaction is very large. When we select an algorithm to 

facilitate this analysis, the number of passes is not a major 

factor to be considered 

From the above study first of all, the FP-growth algorithm 

needs at most two scans of the database, while the number of 

database scans for Apriori increases with the dimension of the 

candidate itemsets. Also, the performance of the FP-growth is 

not influenced by the support factor, while the performance of 

the Apriori algorithm decreases with the support factor. 

Thus, the candidate generating algorithms (derived from 

Apriori) behave well only for small databases (max.50, 000 

transactions) with a large support factor (at least 30%). In 

other cases the algorithm without candidate generation 

DynFP-growth and FP-growth much better. DIC algorithm 

considerably faster than Apriori which must make as many 

passes as the maximum size of the candidate itemsets but it is 

sensitive to the homogenous data and depends on the data 

location.

From the above study we have seen that there is no such 

single association rule mining algorithm that can able to 

handle all the issues like requirement of domain knowledge, 

large data sets, large dimensionality, different types of data 

efficiently and filtering of duplicate data removal. When the 

size of the data set is small to medium and its dimensionality 

is low, then there are a sufficient number of algorithms that 

achieve good and fast association rules.  

Nevertheless when the size of data set is vary large, it has 

many dimensions and a high level of duplication of data 

itemsets then no good and fast algorithm exists. Lately there 

are some algorithms that try to issue these problems with 

promising ideas and results, but still a general solution is far 

away. A solution is further hardened by the fact that most 

association rule mining algorithms are sensitive to their input 

parameters. For different data sets different input parameter 

settings will give a satisfactory result. Finding the correct one 

is not at all an easy task.   
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TABLE I

COMPARISON TABLE

Apriori FP growth Dyn-FP  

growth 

Partition DIC

Category Level wise  

iterative 

method 

Two-phase mining 

(Divide and 

conquer) method 

Two-phase 

mining 

(Divide and 

conquer) 

method 

Level wise  

iterative 

method 

Level wise  

iterative 

method 

User-defined 

Parameter 

L and 

support 

factor ( )

Set of transactions 

D and  and FP-

tree

Set of 

transactions 

D and 

L ,  and 

Partitions of 

database 

transactions  

Set of itemsets 

and  

Candidate 

generation 

Yes No No Yes  Yes 

Completeness of 

patterns to be 

mined

Complete 

set of  

Frequent 

patterns 

Complete set of  

Frequent patterns  

Complete set 

of  

Frequent 

patterns 

Complete set 

of  

Frequent 

patterns 

Complete set of  

Frequent patterns 

Kinds of 

patterns to be 

mined

Frequent 

patterns 

Frequent patterns FP-tree Frequent 

patterns 

Frequent patterns 

Scans Number of 

items (m) +1 

2 2 2 2 

Data structure 

used 

Hash tree Frequent Pattern 

Tree 

Dynamic 

frequent 

Pattern Tree 

Hash table Hash tree 

Kinds of rules to 

be mined 

Association 

rules 

Association rules Association 

rules

Association 

rules 

Association rules 

Types of values 

handled in the 

rule

Numerical Numerical Numerical Numerical Numerical 

Limitation Large 

number of 

DB scans 

Needs a large 

amount of memory. 

Execution 

time depends 

on DB size 

and  not on 

support factor 

If data are not 

uniform, large 

% of false 

itemsets 

Sensitive to 

homogenous data  

and dependence 

on the data 

location 
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