Search results for: Random vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1038

Search results for: Random vibration

978 Quranic Braille System

Authors: Abdallah M. Abualkishik, Khairuddin Omar

Abstract:

This article concerned with the translation of Quranic verses to Braille symbols, by using Visual basic program. The system has the ability to translate the special vibration for the Quran. This study limited for the (Noun + Scoon) vibrations. It builds on an existing translation system that combines a finite state machine with left and right context matching and a set of translation rules. This allows to translate the Arabic language from text to Braille symbols after detect the vibration for the Quran verses.

Keywords: Braille, Quran vibration, Finite State Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
977 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency

Authors: Hamed Jamshidi, Pooya Djamshidi

Abstract:

In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.

Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
976 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has been investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: Actuator, performance, piezoelectric, unimorph.Actuator, performance, piezoelectric, unimorph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
975 An Experimental Study to Control Single Droplet by Actuating Waveform with Preliminary and Suppressing Vibration

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

For advancing the experiment system standard of Inkjet printer that is being developed, the actual natural period, fire limitation number in droplet weight measurement and observation distance in droplet velocity measurement was investigated. In another side, the study to control the droplet volume in inkjet printer with negative actuating waveform method is still limited. Therefore, the effect of negative waveform with preliminary and suppressing vibration addition on the droplet formation process, droplet shape, volume and velocity were evaluated. The different voltage and print-head temperature were exerted to obtain the optimum preliminary and suppressing vibration. The mechanism of different phenomenon from each waveform was also discussed.

Keywords: Inkjet printer, DoD, waveform, preliminary and suppressing vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
974 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

 

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
973 Vibration and Parametric Instability Analysis of Delaminated Composite Beams

Authors: A. Szekrényes

Abstract:

This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.

Keywords: Delamination, free vibration, parametric excitation, sweep excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
972 Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: Built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
971 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization

Authors: James Kuria, John Kihiu

Abstract:

This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.

Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
970 The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets

Authors: E. Jomehzadeh, A.R. Saidi

Abstract:

In the present article, nonlinear vibration analysis of single layer graphene sheets is presented and the effect of small length scale is investigated. Using the Hamilton's principle, the three coupled nonlinear equations of motion are obtained based on the von Karman geometrical model and Eringen theory of nonlocal continuum. The solutions of Free nonlinear vibration, based on a one term mode shape, are found for both simply supported and clamped graphene sheets. A complete analysis of graphene sheets with movable as well as immovable in-plane conditions is also carried out. The results obtained herein are compared with those available in the literature for classical isotropic rectangular plates and excellent agreement is seen. Also, the nonlinear effects are presented as functions of geometric properties and small scale parameter.

Keywords: Small scale, Nonlinear vibration, Graphene sheet, Nonlocal continuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
969 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
968 A New Shock Model for Systems Subject to Random Threshold Failure

Authors: A. Rangan, A. Tansu

Abstract:

This paper generalizes Yeh Lam-s shock model for renewal shock arrivals and random threshold. Several interesting statistical measures are explicitly obtained. A few special cases and an optimal replacement problem are also discussed.

Keywords: shock model, optimal replacement, random threshold, shocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
967 Developing a New Vibration Analysis Calculative Method for Esfahan Subway Train and Railways Design, Manufacturing, and Construction

Authors: Omid A. Zargar

Abstract:

The simulated mass and spring method evaluation for subway or railways construction and installation systems have a wide application in rail industries. This kind of design should be optimizing all related parameters to reduce the amount of vibration in cities, homelands, historical zones and other critical locations. Finite element method could help us a lot to analysis such applications with an excellent accuracy but always developing some simple, fast and user friendly evaluation method required in subway industrial applications. In addition, process parameter optimization extremely required in railway industries to achieve some optimal design of railways with maximum safety, reliability and performance. Furthermore, it is important to reduce vibrations and further related maintenance costs as well as possible. In this paper a simple but useful simulated mass and spring evaluation system developed for Esfahan subway construction. Besides, some of related recent patent and innovations in rail world industries like Suspension mass tuned vibration reducer, short sleeper vibration attenuation fastener and Airtight track vibration-noise reducing fastener discussed in details.

Keywords: Subway construction engineering, natural frequency, operation frequency, vibration analysis, polyurethane layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
966 Attitude Stabilization of Satellites Using Random Dither Quantization

Authors: Attitude Stabilization of Satellites Using Random Dither Quantization

Abstract:

Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.

Keywords: Quantized control, nonlinear systems, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
965 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.

Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
964 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
963 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
962 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration

Authors: Farhad Asadi, Gholamhasan Payganeh

Abstract:

High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.

Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
961 Acoustic Noise Reduction in Single Phase SRM Drives by Random Switching Technique

Authors: Minh-Khai Nguyen, Young-Gook Jung, Young-Cheol Lim

Abstract:

It is known that if harmonic spectra are decreased, then acoustic noise also decreased. Hence, this paper deals with a new random switching strategy using DSP TMS320F2812 to decrease the harmonics spectra of single phase switched reluctance motor. The proposed method which combines random turn-on, turn-off angle technique and random pulse width modulation technique is shown. A harmonic spread factor (HSF) is used to evaluate the random modulation scheme. In order to confirm the effectiveness of the new method, the experimental results show that the harmonic intensity of output voltage for the proposed method is better than that for conventional methods.

Keywords: Single phase switched reluctance motor (SRM), harmonic spread factor (HSF), random switching technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
960 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
959 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery, such as bearings, is important in order to improve the stability of work. Acoustic Emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that vibration analysis is not as successful at low rotational speeds (below 100 rpm). This because the energy generated within this speed region is not detectable using conventional vibration. From this perspective, this paper has presented a brief review of using acoustic emission techniques for monitoring bearing conditions.

Keywords: Condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3719
958 Experimental Technique for Vibration Reduction of a Motor Pumpin Medical Device

Authors: Young Kuen Cho, Dae Won Lee, Young-Jin Jung, Sung Kuk Kim, Dong-Hyun Seo, Chang-Yong Ko, Han Sung Kim

Abstract:

Many medical devices are driven by motor pumps. Some researchers reported that the vibration mainly affected medical devices using a motor pump. The purpose of this study was to examine the effect of stiffness and damping coefficient in a 3-dimensional (3D) model of a motor pump and spring. In the present paper, experimental and mathematical tests for the moments of inertia of the 3D model and the material properties were investigated by an INSTRON machine. The response surfaces could be generated by using 3D multi-body analysis and the design of experiment method. It showed that differences in contours of the response surface were clearly found for the particular area. Displacement of the center of the motor pump was decreased at K≈2000 N/M, C≈12.5 N-sec/M. However, the frequency was increased at K≈2000 N/M, C≈15 N-sec/M. In this study, this study suggested experimental technique for vibration reduction for a motor pump in medical device. The combined method suggested in this study will greatly contribute to design of medical devices concerning vibration and noise intervention.

Keywords: Motor pump, Spring, Vibration reduction, Medicaldevices, Moment of Inertia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
957 Geometrically Non-Linear Axisymmetric Free Vibrations of Thin Isotropic Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

The effects of large vibration amplitudes on the first axisymetric mode shape of thin isotropic annular plates having both edges clamped are examined in this paper. The theoretical model based on Hamilton’s principle and spectral analysis by using a basis of Bessel’s functions is adapted اhere to the case of annular plates. The model effectively reduces the large amplitude free vibration problem to the solution of a set of non-linear algebraic equations.

The governing non-linear eigenvalue problem has been linearised in the neighborhood of each resonance and a new one-step iterative technique has been proposed as a simple alternative method of solution to determine the basic function contributions to the non-linear mode shape considered.

Numerical results are given for the first non-linear mode shape for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency, the membrane and bending stress distributions are given. By comparison with the iterative method of solution, it was found that the present procedure is efficient for a wide range of vibration amplitudes, up to at least 1.8 times the plate thickness,

Keywords: Non-linear vibrations, Annular plates, Large vibration amplitudes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
956 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
955 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
954 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios

Authors: Saijal K. K., K. Prabhakaran Nair

Abstract:

This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.

Keywords: Helicopter rotor, Trailing-edge flap, Thrust coefficient to solidity (Ct /σ) ratio, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4587
953 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: Axial deformation, free vibration, Galerkin Finite Element Method, large amplitude, variational method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
952 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: Drilling, PDE control, robotic arm, resonant vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
951 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

This article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article will be discussed: the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application and it is the main thesis of author’s doctoral dissertation.

Keywords: Electrical vehicle, generator, permanent magnet, traction drive, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
950 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters. 

Keywords: control, counterweight, isolation, vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376
949 Robust Adaptive Vibration Control with Application to a Robot Beam

Authors: J. Fei

Abstract:

This paper presents the adaptive control scheme with sliding mode compensator for vibration control problem in the presence of disturbance. The dynamic model of the flexible cantilever beam using finite element modeling is derived. The adaptive control with sliding mode compensator using output feedback for output tracking is developed to reject the external disturbance, and to improve the tracking performance. Satisfactory simulation results verify that the effectiveness of adaptive control scheme with sliding mode compensator.

Keywords: finite element model, adaptive control, sliding modecontrol, vibration suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386