Search results for: Mirna Guevara
14 Characteristics of Intronic and Intergenic Human miRNAs and Features of their Interaction with mRNA
Authors: Assel S. Issabekova, Olga A. Berillo, Vladimir A. Khailenko, Shara A. Atambayeva, Mireille Regnier, Anatoly T. Ivachshenko
Abstract:
Regulatory relationships of 686 intronic miRNA and 784 intergenic miRNAs with mRNAs of 51 intronic miRNA coding genes were established. Interaction features of studied miRNAs with 5'UTR, CDS and 3'UTR of mRNA of each gene were revealed. Functional regions of mRNA were shown to be significantly heterogenous according to the number of binding sites of miRNA and to the location density of these sites.
Keywords: 5'UTR, 3'UTR, CDS, miRNA, target mRNA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170513 MiRNAs as Regulators of Tumour Suppressor Expression
Authors: Olga A. Berillo, Gaukhar K. Baidildinova, Аnatoliy Т. Ivashchenko
Abstract:
Tumour suppressors are key participants in the prevention of cancer. Regulation of their expression through miRNAs is important for comprehensive translation inhibition of tumour suppressors and elucidation of carcinogenesis mechanisms. We studies the possibility of 1521 miRNAs to bind with 873 mRNAs of human tumour suppressors using RNAHybrid 2.1 and ERNAhybrid programmes. Only 978 miRNAs were found to be translational regulators of 812 mRNAs, and 61 mRNAs did not have any miRNA binding sites. Additionally, 45.9% of all miRNA binding sites were located in coding sequences (CDSs), 33.8% were located in 3' untranslated region (UTR), and 20.3% were located in the 5'UTR. MiRNAs binding with more than 50 target mRNAs and mRNAs binding with several miRNAs were selected. Hsa-miR-5096 had 15 perfectly complementary binding sites with mRNAs of 14 tumour suppressors. These newly indentified miRNA binding sites can be used in the development of medicines (anti-sense therapies) for cancer treatment.Keywords: Exonic miRNA, intergenic miRNA, intronic miRNA, tumor suppressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183412 Intragenic MicroRNAs Binding Sites in MRNAs of Genes Involved in Carcinogenesis
Authors: Olga A. Berillo, Assel S. Issabekova, Anatoly T. Ivashchenko
Abstract:
MiRNAs participate in gene regulation of translation. Some studies have investigated the interactions between genes and intragenic miRNAs. It is important to study the miRNA binding sites of genes involved in carcinogenesis. RNAHybrid 2.1 and ERNAhybrid programmes were used to compute the hybridization free energy of miRNA binding sites. Of these 54 mRNAs, 22.6%, 37.7%, and 39.7% of miRNA binding sites were present in the 5'UTRs, CDSs, and 3'UTRs, respectively. The density of the binding sites for miRNAs in the 5'UTR ranged from 1.6 to 43.2 times and from 1.8 to 8.0 times greater than in the CDS and 3'UTR, respectively. Three types of miRNA interactions with mRNAs have been revealed: 5'- dominant canonical, 3'-compensatory, and complementary binding sites. MiRNAs regulate gene expression, and information on the interactions between miRNAs and mRNAs could be useful in molecular medicine. We recommend that newly described sites undergo validation by experimental investigation.Keywords: Exon, intron, miRNA, oncogene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200611 A study of Cancer-related MicroRNAs through Expression Data and Literature Search
Authors: Chien-Hung Huang, Chia-Wei Weng, Chang-Chih Chiang, Shih-Hua Wu, Chih-Hsien Huang, Ka-Lok Ng
Abstract:
MicroRNAs (miRNAs) are a class of non-coding RNAs that hybridize to mRNAs and induce either translation repression or mRNA cleavage. Recently, it has been reported that miRNAs could possibly play an important role in human diseases. By integrating miRNA target genes, cancer genes, miRNA and mRNA expression profiles information, a database is developed to link miRNAs to cancer target genes. The database provides experimentally verified human miRNA target genes information, including oncogenes and tumor suppressor genes. In addition, fragile sites information for miRNAs, and the strength of the correlation of miRNA and its target mRNA expression level for nine tissue types are computed, which serve as an indicator for suggesting miRNAs could play a role in human cancer. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/mirna_target/index.html.Keywords: MicroRNA, miRNA expression profile, mRNAexpression profile, cancer genes, oncogene, tumor suppressor gene
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153510 Computational Identification of MicroRNAs and their Targets in two Species of Evergreen Spruce Tree (Picea)
Authors: Muhammad Y.K. Barozai, Ifthikhar A. Baloch, M. Din
Abstract:
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about 20 to 24 nucleotides long. Their conserved nature among the various organisms makes them a good source of new miRNAs discovery by comparative genomics approach. The study resulted in 21 miRNAs of 20 pre-miRNAs belonging to 16 families (miR156, 157, 158, 164, 165, 168, 169, 172, 319, 390, 393, 394, 395, 400, 472 and 861) in evergreen spruce tree (Picea). The miRNA families; miR 157, 158, 164, 165, 168, 169, 319, 390, 393, 394, 400, 472 and 861 are reported for the first time in the Picea. All 20 miRNA precursors form stable minimum free energy stem-loop structure as their orthologues form in Arabidopsis and the mature miRNA reside in the stem portion of the stem loop structure. Sixteen (16) miRNAs are from Picea glauca and five (5) belong to Picea sitchensis. Their targets consist of transcription factors, growth related, stressed related and hypothetical proteins.Keywords: BLAST, Comparative Genomics, Micro-RNAs, Spruce
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20549 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12728 Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196
Authors: Yanju Zhang, Joost M. Woltering, Fons J. Verbeek
Abstract:
It has been established that microRNAs (miRNAs) play an important role in gene expression by post-transcriptional regulation of messengerRNAs (mRNAs). However, the precise relationships between microRNAs and their target genes in sense of numbers, types and biological relevance remain largely unclear. Dissecting the miRNA-target relationships will render more insights for miRNA targets identification and validation therefore promote the understanding of miRNA function. In miRBase, miRanda is the key algorithm used for target prediction for Zebrafish. This algorithm is high-throughput but brings lots of false positives (noise). Since validation of a large scale of targets through laboratory experiments is very time consuming, several computational methods for miRNA targets validation should be developed. In this paper, we present an integrative method to investigate several aspects of the relationships between miRNAs and their targets with the final purpose of extracting high confident targets from miRanda predicted targets pool. This is achieved by using the techniques ranging from statistical tests to clustering and association rules. Our research focuses on Zebrafish. It was found that validated targets do not necessarily associate with the highest sequence matching. Besides, for some miRNA families, the frequency of their predicted targets is significantly higher in the genomic region nearby their own physical location. Finally, in a case study of dre-miR-10 and dre-miR-196, it was found that the predicted target genes hoxd13a, hoxd11a, hoxd10a and hoxc4a of dre-miR- 10 while hoxa9a, hoxc8a and hoxa13a of dre-miR-196 have similar characteristics as validated target genes and therefore represent high confidence target candidates.Keywords: MicroRNA targets validation, microRNA-target relationships, dre-miR-10, dre-miR-196.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19917 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23876 Web–Based Tools and Databases for Micro-RNA Analysis: A Review
Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar
Abstract:
MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.
Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31845 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico
Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez
Abstract:
Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.
Keywords: Biodiesel production, Jatropha curcas, morphologic growth, toxic and non-toxic ecotypes, seed oil content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8224 Non Inmersive Virtual Reality for Improving Teaching Processes
Authors: Galeano R. Katherine, Rincon L. David, Luengas. Lely, Guevara. Juan Carlos
Abstract:
The following paper shows an interactive tool which main purpose is to teach how to play a flute. It consists of three stages the first one is the instruction and teaching process through a software application, the second is the practice part when the user starts to play the flute (hardware specially designed for this application) this flute is capable of capturing how is being played the flute and the final stage is the one in which the data captured are sent to the software and the user is evaluated in order to give him / she a correction or an acceptanceKeywords: acoustoelectric devices, computer applications, learning systems, music, technological innovation, virtual reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16153 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.
Keywords: Decision making, Markov chain, optimization, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20142 In silico Analysis of Human microRNAs Targeting Influenza a Viruses (subtype H1N1, H5N1 and H3N2)
Authors: Kritsada Khongnomnan, Wittaya Poomipak, Yong Poovorawan, Sunchai Payungporn
Abstract:
In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) which naturally infected human were analyzed by bioinformatic approaches to find candidate human cellular miRNAs targeting viral genomes. There were 76 miRNAs targeting influenza A viruses. Among these candidates, 70 miRNAs were subtypes specifically targeting each subtype of influenza A virus including 21 miRNAs targeted subtype H1N1, 27 miRNAs targeted subtype H5N1 and 22 miRNAs targeted subtype H3N2. The remaining 6 miRNAs target on multiple subtypes of influenza A viruses. Uniquely, hsa-miR-3145 is the only one candidate miRNA targeting PB1 gene of all three subtypes. Obviously, most of the candidate miRNAs are targeting on polymerase complex genes (PB2, PB1 and PA) of influenza A viruses. This study predicted potential human miRNAs targeting on different subtypes of influenza A viruses which might be useful for inhibition of viral replication and for better understanding of the interaction between virus and host cell.
Keywords: Human miRNAs, Influenza A viruses, H1N1, H5N1, H3N2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931 Binding of miR398 to mRNA of Chaperone and Superoxide Dismutase Genes in Plants
Authors: Assyl Bari, Olga Berillo, Saltanat Orazova, Anatoliy Ivashchenko
Abstract:
Among all microRNAs (miRNAs) in 12 plant species investigated in this study, only miR398 targeted the copper chaperone for superoxide dismutase (CCS). The nucleotide sequences of miRNA binding sites were located in the mRNA protein-coding sequence (CDS) and were highly homologous. These binding sites in CCS mRNA encoded a conservative GDLGTL hexapeptide. The binding sites for miR398 in the CDS of superoxide dismutase 1 mRNA encoded GDLGN pentapeptide. The conservative miR398 binding site located in the CDS of superoxide dismutase 2 mRNA encoded the GDLGNI hexapeptide. The miR398 binding site in the CDS of superoxide dismutase 3 mRNA encoded the GDLGNI or GDLGNV hexapeptide. Gene expression of the entire superoxide dismutase family in the studied plant species was regulated only by miR398. All members of the miR398 family, i.e. miR398a,b,c were connected to one site for each CuZnSOD and chaperone mRNA.
Keywords: MicroRNA, mRNA, plant, superoxide dismutase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910