Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196

Authors: Yanju Zhang, Joost M. Woltering, Fons J. Verbeek

Abstract:

It has been established that microRNAs (miRNAs) play an important role in gene expression by post-transcriptional regulation of messengerRNAs (mRNAs). However, the precise relationships between microRNAs and their target genes in sense of numbers, types and biological relevance remain largely unclear. Dissecting the miRNA-target relationships will render more insights for miRNA targets identification and validation therefore promote the understanding of miRNA function. In miRBase, miRanda is the key algorithm used for target prediction for Zebrafish. This algorithm is high-throughput but brings lots of false positives (noise). Since validation of a large scale of targets through laboratory experiments is very time consuming, several computational methods for miRNA targets validation should be developed. In this paper, we present an integrative method to investigate several aspects of the relationships between miRNAs and their targets with the final purpose of extracting high confident targets from miRanda predicted targets pool. This is achieved by using the techniques ranging from statistical tests to clustering and association rules. Our research focuses on Zebrafish. It was found that validated targets do not necessarily associate with the highest sequence matching. Besides, for some miRNA families, the frequency of their predicted targets is significantly higher in the genomic region nearby their own physical location. Finally, in a case study of dre-miR-10 and dre-miR-196, it was found that the predicted target genes hoxd13a, hoxd11a, hoxd10a and hoxc4a of dre-miR- 10 while hoxa9a, hoxc8a and hoxa13a of dre-miR-196 have similar characteristics as validated target genes and therefore represent high confidence target candidates.

Keywords: MicroRNA targets validation, microRNA-target relationships, dre-miR-10, dre-miR-196.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330189

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999

References:


[1] R. C. Lee, R. L. Feinbaum, and V. Ambros, "The c. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14." Cell, vol. 75, no. 5, pp. 843-854, December 1993.
[2] R. H. Plasterk, "Micrornas in animal development." Cell, vol. 124, no. 5, pp. 877-881, March 2006.
[3] A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks, "Microrna targets in drosophila." Genome Biol, vol. 5, no. 1, 2003.
[4] B. J. Reinhart, F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E. Rougvie, R. H. Horvitz, and G. Ruvkun, "The 21-nucleotide let-7 rna regulates developmental timing in caenorhabditis elegans," Nature, vol. 403, no. 6772, pp. 901-906, February 2000.
[5] J. Brennecke, D. R. Hipfner, A. Stark, R. B. Russell, and S. M. Cohen, "bantam encodes a developmentally regulated microrna that controls cell proliferation and regulates the proapoptotic gene hid in drosophila." Cell, vol. 113, no. 1, pp. 25-36, April 2003.
[6] C. Chen, L. Li, H. Lodish, and D. Bartel, "Micrornas modulate hematopoietic lineage differentiation," Science, vol. 303, no. 5654, pp. 83-86, Jan 2004.
[7] C. Lecellier, P. Dunoyer, K. Arar, J. Lehmann-Che, S. Eyquem, C. Himber, A. Sab, and O. Voinnet, "A cellular microrna mediates antiviral defense in human cells," Science, vol. 308, no. 5721, pp. 795-825, April 2005.
[8] M. W. Rhoades, B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel, and D. P. Bartel, "Prediction of plant microrna targets." Cell, vol. 110, no. 4, pp. 513-520, August 2002.
[9] X. Wang and X. Wang, "Systematic identification of microrna functions by combining target prediction and expression profiling," Nucleic Acids Research, vol. 34, no. 5, pp. 1646-1652, 2006.
[10] N. D. Rajewsky, N.and Soccib, "Computational identification of microrna targets," Developmental Biology, vol. 267, no. 2, pp. 529-535, March 2004.
[11] A. Stark, J. Brennecke, R. B. Russell, and S. M. Cohen, "Identification of drosophila microrna targets." PLoS Biol, vol. 1, no. 3, December 2003.
[12] B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, "Prediction of mammalian microrna targets." Cell, vol. 115, no. 7, pp. 787-798, December 2003.
[13] J. R. Brown and P. Sanseau, "A computational view of micrornas and their targets." Drug Discov Today, vol. 10, no. 8, pp. 595-601, April 2005.
[14] S. Griffiths-Jones, R. J. Grocock, S. van Dongen, A. Bateman, and A. J. Enright, "mirbase: microrna sequences, targets and gene nomenclature." Nucleic Acids Res, vol. 34, January 2006.
[15] J. Zhou, V. Melfi, J. Verducci, and S. Lin, "Composite microrna target predictions and comparisons of several prediction algorithms," JSM 2006 Online Program, 2006.
[16] A. Stark, J. Brennecke, R. B. Russell, and S. M. Cohen, "Identification of drosophila microrna targets." PLoS Biol, vol. 1, no. 3, December 2003.
[17] S. Griffiths-Jones, "The microrna registry." Nucleic Acids Res, vol. 32, January 2004.
[18] M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eilbeck, S. Lewis, B. Marshall, C. Mungall, J. Richter, G. M. Rubin, J. A. Blake, C. Bult, M. Dolan, H. Drabkin, J. T. Eppig, D. P. Hill, L. Ni, M. Ringwald, R. Balakrishnan, J. M. Cherry, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E. Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L. Theesfeld, D. Botstein, K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Barrell, E. Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W. Kibbe, R. Kishore, E. M. Schwarz, P. Sternberg, M. Gwinn, L. Hannick, J. Wortman, M. Berriman, V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal, T. Seigfried, and R. a. White, "The gene ontology (go) database and informatics resource." Nucleic Acids Res, vol. 32, no. Database issue, January 2004.
[19] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, "Gene ontology: tool for the unification of biology. the gene ontology consortium." Nat Genet, vol. 25, no. 1, pp. 25-29, May 2000.
[20] T. J. Hubbard, B. L. Aken, K. Beal, B. Ballester, M. Caccamo, Y. Chen, L. Clarke, G. Coates, F. Cunningham, T. Cutts, T. Down, S. C. Dyer, S. Fitzgerald, J. Fernandez-Banet, S. Graf, S. Haider, M. Hammond, J. Herrero, R. Holland, K. Howe, K. Howe, N. Johnson, A. Kahari, D. Keefe, F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, C. Melsopp, K. Megy, P. Meidl, B. Ouverdin, A. Parker, A. Prlic, S. Rice, D. Rios, M. Schuster, I. Sealy, J. Severin, G. Slater, D. Smedley, G. Spudich, S. Trevanion, A. Vilella, J. Vogel, S. White, M. Wood, T. Cox, V. Curwen, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, A. Kasprzyk, G. Proctor, S. Searle, J. Smith, A. Ureta-Vidal, and E. Birney, "Ensembl 2007." Nucleic Acids Res, vol. 35, no. Database issue, January 2007.
[21] J. Stalker, B. Gibbins, P. Meidl, J. Smith, W. Spooner, H. Hotz, and A. Cox, "The ensembl web site: Mechanics of a genome browser," Genome Res, vol. 14, no. 5, pp. 951-955, May 2004.
[22] P. Schattner, "Automated querying of genome databases," PLoS Computational Biology, vol. 3, no. 1, January 2007.
[23] J. M. Woltering and A. J. Durston, "The zebrafish hoxdb cluster has been reduced to a single microrna," Nature Genetics, vol. 38, no. 6, pp. 601-602, 2006.
[24] S. Yekta, I. H. Shih, and D. P. Bartel, "Microrna-directed cleavage of hoxb8 mrna." Science, vol. 304, no. 5670, pp. 594-596, April 2004.
[25] miRBase, "http://microrna.sanger.ac.uk/targets/v4/faq.html."
[26] P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. M. Carazo, and A. Pascual-Montano, "Integrated analysis of gene expression by association rules discovery." BMC Bioinformatics, vol. 7, 2006.
[27] A. Tanzer, C. T. Amemiya, C. B. Kim, and P. F. Stadler, "Evolution of micrornas located within hox gene clusters," Experimental Zoology, vol. 304B, pp. 75-85, 2005.
[28] ScalableVectorGraphics, "http://www.w3.org/graphics/svg/."
[29] Cytoscape, "http://www.cytoscape.org/."
[30] E. Hornstein, J. H. Mansfield, S. Yekta, J. K. Hu, B. D. Harfe, M. T. Mcmanus, S. Baskerville, D. P. Bartel, and C. J. Tabin, "The microrna mir-196 acts upstream of hoxb8 and shh in limb development," Nature, vol. 438, no. 7068, pp. 671-674, 2005.
[31] J. M. Woltering and A. J. Durston, "Mir-10 targets hoxb1a and hoxb3a and is required for correct migration of the xth cranial nerve," In preparation, 2007.
[32] H. Inaoka, Y. Fukuoka, and I. S. Kohane, "Lower expression of genes near microrna in c. elegans germline." BMC Bioinformatics, vol. 7, no. 1, March 2006.