Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33100
Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: Biodiesel production, Jatropha curcas, morphologic growth, toxic and non-toxic ecotypes, seed oil content.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3298799

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821

References:


[1] García CA, Riegelhaupt E, Ghilardi A, Skutsch M, Islas J, Manzini F, et al. Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renew Sustain Energy Rev 2015;43:545–52. doi:10.1016/j.rser.2014.11.062.
[2] Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sustain Energy Rev 2017;72:445–64. doi:10.1016/j.rser.2017.01.034.
[3] Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renew Sustain Energy Rev 2017;72:497–509. doi:10.1016/j.rser.2017.01.001.
[4] Banerji R, Chowdhury AR, Misra G, Sudarsanan G, Verma SC, Srivastava GS. Jatropha seed oils for energy. Biomass 1985;8:277–82. doi:10.1016/0144-4565(85)90060-5.
[5] Heller J. Physic nut. Jatropha curcas L. 1996.
[6] Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 2006;96:80–9. doi:10.1016/j.foodchem.2005.01.059.
[7] Achten WM, Nielsen LR, Aerts R, Lengkeek AG, Kjær ED, Trabucco A, et al. Towards domestication of Jatropha curcas. Biofuels 2010;1:91–107. doi:10.4155/bfs.09.4.
[8] Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind Crops Prod 2008;28:1–10. doi:10.1016/j.indcrop.2008.01.001.
[9] Singh YP, Mishra VK, Sharma DK, Singh G, Arora S, Dixit H, et al. Harnessing productivity potential and rehabilitation of degraded sodic lands through Jatropha based intercropping systems. Agric Ecosyst Environ 2016;233:121–9. doi:10.1016/j.agee.2016.08.034.
[10] Francis G, Edinger R, Becker K. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat Resour Forum 2005;29:12–24. doi:10.1111/j.1477-8947.2005.00109.x.
[11] Ravindranath NH, Sita Lakshmi C, Manuvie R, Balachandra P. Biofuel production and implications for land use, food production and environment in India. Energy Policy 2011;39:5737–45. doi:10.1016/j.enpol.2010.07.044.
[12] Thanungkano W, Boonkum P, Wisarnsuwannakorn R, Mungkalasiri J. Sufficiency Economy for Local Energy Security: A Case Study in Wiang Sa Jatropha Municipalilty. Energy Procedia, vol. 79, 2015, p. 465–70. doi:10.1016/j.egypro.2015.11.520.
[13] Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, et al. Jatropha bio-diesel production and use. Biomass and Bioenergy 2008;32:1063–84. doi:10.1016/j.biombioe.2008.03.003.
[14] Ahmed W, Nazar MF, Ali SD, Rana UA, Khan SUD. Detailed investigation of optimized alkali catalyzed transesterification of Jatropha oil for biodiesel production. J Energy Chem 2015;24:331–6. doi:10.1016/S2095-4956(15)60319-9.
[15] Achten WMJ, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B. Jatropha biodiesel fueling sustainability? Biofuels, Bioprod Biorefining 2007;1:283–91. doi:10.1002/bbb.39.
[16] Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, et al. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers Manag 2014;80:202–28. doi:10.1016/j.enconman.2014.01.037.
[17] Siregar K, Tambunan AH, Irwanto AK, Wirawan SS, Araki T. A Comparison of Life Cycle Assessment on Oil Palm (Elaeis guineensis Jacq.) and Physic Nut (Jatropha curcas Linn.) as Feedstock for Biodiesel Production in Indonesia. Energy Procedia, vol. 65, 2015, p. 170–9. doi:10.1016/j.egypro.2015.01.054.
[18] Wang Z, Calderon MM, Lu Y. Lifecycle assessment of the economic, environmental and energy performance of Jatropha curcas L. biodiesel in China. Biomass and Bioenergy 2011;35:2893–902. doi:10.1016/j.biombioe.2011.03.031.
[19] Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 2009;111:773–87. doi:10.1002/ejlt.200800244.
[20] Wani SP, Chander G, Sahrawat KL, Srinivasa Rao C, Raghvendra G, Susanna P, et al. Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric Ecosyst Environ 2012;161:112–20. doi:10.1016/j.agee.2012.07.028.
[21] Di??dhiou I, Diallo D, Mbengue A, Hernandez RR, Bayala R, Di??me R, et al. Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin. Glob Ecol Conserv 2017;9:61–9. doi:10.1016/j.gecco.2016.11.007.
[22] Francis G, Oliver J, Sujatha M. Non-toxic jatropha plants as a potential multipurpose multi-use oilseed crop. Ind Crops Prod 2013;42:397–401. doi:10.1016/j.indcrop.2012.06.015.
[23] Makkar HPS. State-of-the-art on detoxification of Jatropha curcas products aimed for use as animal and fish feed: A review. Anim Feed Sci Technol 2016;222:87–99. doi:10.1016/j.anifeedsci.2016.09.013.
[24] Castro Gonzáles NF. International experiences with the cultivation of Jatropha curcas for biodiesel production. Energy 2016;112:1245–58. doi:10.1016/j.energy.2016.06.073.
[25] Walmsley DC, Bailis R, Klein A-M. A Global Synthesis of Jatropha Cultivation: Insights into Land Use Change and Management Practices. Environ Sci Technol 2016:acs.est.6b01274. doi:10.1021/acs.est.6b01274.
[26] Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S, et al. Jatropha curcas L.: A crucified plant waiting for resurgence. Renew Sustain Energy Rev 2015;41:855–62.
[27] Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL. Biology and genetic improvement of Jatropha curcas L.: A review. Appl Energy 2010;87:732–42. doi:10.1016/j.apenergy.2009.07.013.
[28] Martínez-Díaz Y, González-Rodríguez A, Delgado-Lamas G, Espinosa-García FJ. Geographic structure of chemical variation in wild populations of the fuel crop Jatropha curcas L. in Mexico. Ind Crops Prod 2015;74:63–8. doi:10.1016/j.indcrop.2015.04.049.
[29] Singh K, Singh B, Verma SK, Patra DD. Jatropha curcas: A ten year story from hope to despair. Renew Sustain Energy Rev 2014;35. doi:10.1016/j.rser.2014.04.033.
[30] Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N. EvaBehera, S.K., Srivastava, P., Tripathi, R., Singh, J.P., Singh, N., 2010. Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass - A case study. Biomass and Bioenergy 34, 30–41. https://doi.org/10.10. Biomass and Bioenergy 2010;34:30–41. doi:10.1016/j.biombioe.2009.09.008.
[31] Srivastava P, Behera SK, Gupta J, Jamil S, Singh N, Sharma YK. Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation site. Biomass and Bioenergy 2011;35:3936–42. doi:10.1016/j.biombioe.2011.06.008.
[32] Padilla V, Villar C, Sergio H, Coiffier V, Patricia M. The project of biofuels in Chiapas: Experiences of physic nut (Jatropha curcas) farmers within the rural crisis framework. Estud Soc 2011;19:120–44.
[33] Valdés Rodríguez OA, Vázquez AP, Gamboa CM. Drivers and consequences of the first Jatropha curcas plantations in Mexico. Sustain 2014;6:3732–46. doi:10.3390/su6063732.
[34] Islas Samperio JM, Manzini Poli FL, Martinez Romero E, Perez Orozco MDJ, Toleo Garcia II. Base de datos de Parametros Biofisicos de 15 ecotipos de Jatropha curcas de la plantación experimental de Miacatlan, Morelos. Registro Público del Derecho de Autor. Número de registro 03-2013-020113160600-01 2013.
[35] Verma SP, Cruz Huicochea R, Diaz Gonzáles L. Univariate Data Analysis system:deciphering mean compositions of island and continental arc magmas, and influence of the underlying crust. Int Geol Rev 2013;55:1922–40.