Search results for: Maximum Transfer Unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3359

Search results for: Maximum Transfer Unit

3299 The Influence of Knowledge Transfer on Outputs of Innovative Process – Case Study of Czech Regions

Authors: J. Stejskal, P. Hajek

Abstract:

The goal of this article is the analysis of knowledge transfer at the regional level of the Czech Republic. We show how goals of enterprises´ innovative activities are related to the rate of cooperation with different actors within regional innovative systems as well as in other world regions. The results show that the most important partners of enterprises are their suppliers and clients in most Czech regions. The cooperation rate of enterprises correlates significantly mainly with enterprises´ efforts to enter new markets and reduce labour costs per unit output. The meaning of this cooperation decreases with the increase of partner’s distance. Regarding the type of a cooperating partner, cooperation within an enterprise had to do with the increase of market share and decrease of labour costs. On the other hand, cooperation with clients had to do with efforts to replace outdated products or processes or enter new markets. We can pay less attention to the cooperation with government authorities and organizations. The reasons for marginalization of this cooperation should be submitted to further detailed investigation.

Keywords: Knowledge, transfer, innovative process, Czech republic, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
3298 Optimal Maintenance Policy for a Partially Observable Two-Unit System

Authors: Leila Jafari, Viliam Makis, Akram Khaleghei G.B.

Abstract:

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.

Keywords: Condition-Based Maintenance, Semi-Markov Decision Process, Multivariate Bayesian Control Chart, Partially Observable System, Two-unit System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
3297 Unit Testing with Déjà-Vu Objects

Authors: Sharareh Afsharian, Andrea Bei, Marco Bianchi

Abstract:

In this paper we introduce a new unit test technique called déjà-vu object. Déjà-vu objects replace real objects used by classes under test, allowing the execution of isolated unit tests. A déjà-vu object is able to observe and record the behaviour of a real object during real sessions, and to replace it during unit tests, returning previously recorded results. Consequently déjà-vu object technique can be useful when a bottom-up development and testing strategy is adopted. In this case déjà-vu objects can increase test portability and test source code readability. At the same time they can reduce the time spent by programmers to develop test code and the risk of incompatibility during the switching between déjà-vu and production code.

Keywords: Bottom-up testing approach, integration test, testportability, unit test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
3296 The Influence of the Inlet Conditions on the Airside Heat Transfer Performance of Plain Finned Evaporator

Authors: Abdenour Bourabaa, Mohamed Saighi, Ibrahim Belal

Abstract:

A numerical study has been conducted to investigate the influence of fin pitch and relative humidity on the heat transfer performance of the fin-and-tube heat exchangers having plain fin geometry under dehumidifying conditions. The analysis is done using the ratio between the heat transfer coefficients in totally wet conditions and those in totally dry conditions using the appropriate correlations for both dry and wet conditions. For a constant relative humidity, it is found that the heat transfer coefficient increases with the increase of the air frontal velocity. By contrast, the fin efficiency decreases when the face velocity is increased. Apparently, this phenomenon is attributed to the path of condensate drainage. For the influence of relative humidity, the results showed an increase in heat transfer performance and a decrease in wet fin efficiency when relative humidity increases. This is due to the higher amount of mass transfer encountered at higher relative humidity. However, it is found that the effect of fin pitch on the heat transfer performance depends strongly on the face velocity. At lower frontal velocity the heat transfer increases with fin pitch. Conversely, an increase in fin pitch gives lower heat transfer coefficients when air velocity is increased.

Keywords: Dehumidifying conditions, Fin efficiency, Heat andmass transfer, Heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
3295 Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet

Authors: Kai-Long Hsiao, BorMing Lee

Abstract:

In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.

Keywords: Conjugate heat and mass transfer, Radiation effect, Magnetic effect, Viscoelastic fluid, Viscous dissipation, Stretchingsheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
3294 An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner

Authors: P. Suntivarakorn, S. Satmarong, C. Benjapiyaporn, S. Theerakulpisut

Abstract:

This paper was to study the clothes dryer using waste heat from a split type air conditioner with a capacity of 12,648 btu/h. The drying chamber had a minimum cross section area with the size of 0.5 x 1.0 m2. The chamber was constructed by sailcloth and was inside folded with aluminium foil. Then, it was connected to the condensing unit of an air conditioner. The experiment was carried out in two aspects which were the clothes drying with and without auxiliary fan unit. The results showed that the drying rate of clothes in the chamber installed with and without auxiliary fan unit were 2.26 and 1.1 kg/h, respectively. In case of the chamber installed with a auxiliary fan unit, the additional power of 0.011 kWh was consumed and the drying rate was higher than that of clothes drying without auxiliary fan unit. Without auxiliary fan unit installation, no energy was required but there was a portion of hot air leaks away through the punctured holes at the wall of the drying chamber, hence the drying rate was dropped below. The drying rate of clothes drying using waste heat was higher than natural indoor drying and commercial dryer which their drying rate were 0.17 and 1.9 kg/h, respectively. It was noted that the COP of the air conditioner did not change during the operating of clothes drying.

Keywords: Drying Rate, Clothes Dryer, COP, Air Conditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3452
3293 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
3292 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: Thermoacoustics, dynamics, combustor, transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
3291 A New Muscle Architecture Model with Non-Uniform Distribution of Muscle Fiber Types

Authors: Javier Navallas, Armando Malanda, Luis Gila, Javier Rodriguez, Ignacio Rodriguez

Abstract:

According to previous studies, some muscles present a non-homogeneous spatial distribution of its muscle fiber types and motor unit types. However, available muscle models only deal with muscles with homogeneous distributions. In this paper, a new architecture muscle model is proposed to permit the construction of non-uniform distributions of muscle fibers within the muscle cross section. The idea behind is the use of a motor unit placement algorithm that controls the spatial overlapping of the motor unit territories of each motor unit type. Results show the capabilities of the new algorithm to reproduce arbitrary muscle fiber type distributions.

Keywords: muscle model, muscle architecture, motor unit, EMG simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
3290 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
3289 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts

Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli

Abstract:

This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular duct

Keywords: Heat transfer, turbulence, rectangular duct, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
3288 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

Authors: Zhang Lei, Liu Min, Liu Botao

Abstract:

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

Keywords: heat transfer, heat sink, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
3287 Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis

Authors: Mohamed Ali KAMMOUN, Ahmed Ben HAMIDA

Abstract:

In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.

Keywords: Unit selection, Corpus-based Speech Synthesis, Bigram model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
3286 The Role of the Internal Audit Unit in Detecting and Preventing Fraud at Public Universities in West Java, Indonesia

Authors: Fury Khristianty Fitriyah

Abstract:

This study aims to identify the extent of the role of the Satuan Pengawas Intern (Internal Audit Unit) in detecting and preventing fraud in public universities in West Java under the Ministry of Research, Technology and Higher Education. The research method applied was a qualitative case study approach, while the unit of analysis for this study is the Internal Audit Unit at each public university. Results of this study indicate that the Internal Audit Unit is able to detect and prevent fraud within a public university environment by means of red flags to mark accounting anomalies. These stem from inaccurate budget planning that prompts inappropriate use of funds, exacerbated by late disbursements of funds, which potentially lead to fictitious transactions, and discrepancies in recording state-owned assets into a state property management system (SIMAK BMN), which, if not conducted properly, potentially causes loss to the state.

Keywords: Internal Audit Unit, efficiency, fraud, public university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
3285 Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria

Authors: Sayed Ahmed E. Sayed Ahmed, Emad Z. Ibrahiem, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: Wing-shaped tubes, Cross-flow cooling, Staggered arrangement, and CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
3284 A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks

Authors: Vahid Salmani, Saman Taghavi Zargar, Mahmoud Naghibzadeh

Abstract:

This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.

Keywords: Modified maximum urgency first, maximum urgency first, real-time systems, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
3283 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
3282 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: Film condensation, heat transfer, plain tube, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
3281 Urban-Rural Balance, Regional Coordination and Land Transfer in China

Authors: Ling Zheng, Yaping Wei, Kang Cao, Songpo Shi, Jinxing Wang

Abstract:

It-s difficult for China-s current land transfer institutions limited to county-wide to solve the contradiction between urban-rural development and construction land shortage. On the basis of analyzing China-s construction land transfer system, and evaluation toward Transfer of development rights (TDR) practices in Anhui and Chongqing, the passage proposes: (1) we should establish a multi-level land indicators trade market under the guidance of regional spatial objectives, and allow land transfer paid across cities and counties within a specific area following the regulation of both government and market; (2) it would be better to combine organically the policy ntentions of land plan, regional plan, urban plan and economic plan, and link them with land indicators transfer to promote a wider range of urban-rural balance and regional coordination.

Keywords: China's land institutions, transfer of development rights, urban-rural balance, regional coordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
3280 Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficient

Authors: Giho Jeong, Sooin Jeong, Kuisoon Kim

Abstract:

It is very important to determine reference temperature when convective temperature because it should be used to calculate the temperature potential. This paper deals with the development of a new method that can determine heat transfer coefficient and reference free stream temperature simultaneously, based on transient heat transfer experiments with using two narrow band thermo-tropic liquid crystals (TLC's). The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and free stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

Keywords: Heat transfer coefficient, Thermo-tropic LiquidCrystal (TLC), Free stream temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
3279 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

Authors: Seyedvahid Najafi, Viliam Makis

Abstract:

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

Keywords: Condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
3278 Modeling of Radiative Heat Transfer in 2D Complex Heat Recuperator of Biomass Pyrolysis Furnace: A Study of Baffles Shadow and Soot Volume Fraction Effects

Authors: Mohamed Ammar Abbassi, Kamel Guedri, Mohamed Naceur Borjini, Kamel Halouani, Belkacem Zeghmati

Abstract:

The radiative heat transfer problem is investigated numerically for 2D complex geometry biomass pyrolysis reactor composed of two pyrolysis chambers and a heat recuperator. The fumes are a mixture of carbon dioxide and water vapor charged with absorbing and scattering particles and soot. In order to increase gases residence time and heat transfer, the heat recuperator is provided with many inclined, vertical, horizontal, diffuse and grey baffles of finite thickness and has a complex geometry. The Finite Volume Method (FVM) is applied to study radiative heat transfer. The blocked-off region procedure is used to treat the geometrical irregularities. Eight cases are considered in order to demonstrate the effect of adding baffles on the walls of the heat recuperator and on the walls of the pyrolysis rooms then choose the best case giving the maximum heat flux transferred to the biomass in the pyrolysis chambers. Ray effect due to the presence of baffles is studied and demonstrated to have a crucial effect on radiative heat flux on the walls of the pyrolysis rooms. Shadow effect caused by the presence of the baffles is also studied. The non grey radiative heat transfer is studied for the real existent configuration. The Weighted Sum of The Grey Gases (WSGG) Model of Kim and Song is used as non grey model. The effect of soot volumetric fraction on the non grey radiative heat flux is investigated and discussed.

Keywords: Baffles, Blocked-off region procedure, FVM, Heat recuperation, Radiative heat transfer, Shadow effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
3277 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
3276 Investigation on Fluid Flow and Heat Transfer Characteristics in Spray Cooling Systems Using Nanofluids

Authors: D. H. Lee, Nur Irmawati

Abstract:

This paper aims to study the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: Numerical simulation, Spray cooling, Heat transfer, Nanofluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
3275 Oxygen Transfer by Multiple Inclined Plunging Water Jets

Authors: Surinder Deswal

Abstract:

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
3274 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
3273 Phase Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops in 10 Gb/s and faster data links are low phase noise devices. Characterization of their phase jitter transfer functions is difficult because the intrinsic noise of the PLLs is comparable to the phase noise of the reference clock signal. The problem is solved by using a linear model to account for the intrinsic noise. This study also introduces a novel technique for measuring the transfer function. It involves the use of the reference clock as a source of wideband excitation, in contrast to the commonly used sinusoidal excitations at discrete frequencies. The data reported here include the intrinsic noise of a PLL for 10 Gb/s links and the jitter transfer function of a PLL for 12.8 Gb/s links. The measured transfer function suggests that the PLL responded like a second order linear system to a low noise reference clock.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
3272 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications

Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós

Abstract:

Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.

Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
3271 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783
3270 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace

Authors: U. Prasopchingchana

Abstract:

The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.

Keywords: Conduction, heat transfer, multi-layer door, natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059