

Abstract—In this paper we introduce a new unit test technique

called déjà-vu object. Déjà-vu objects replace real objects used by
classes under test, allowing the execution of isolated unit tests. A
déjà-vu object is able to observe and record the behaviour of a real
object during real sessions, and to replace it during unit tests,
returning previously recorded results. Consequently déjà-vu object
technique can be useful when a bottom-up development and testing
strategy is adopted. In this case déjà-vu objects can increase test
portability and test source code readability. At the same time they
can reduce the time spent by programmers to develop test code and
the risk of incompatibility during the switching between déjà-vu and
production code.

Keywords—Bottom-up testing approach, integration test, test
portability, unit test.

I. INTRODUCTION
NIT testing is a process of testing the individual classes
in a program. The purpose of unit testing is to compare

the function of a class to some functional or interface
specification defining the class. In ideal conditions a unit test
should test in isolation the class under test. Unfortunately, it is
not simple to test a class in a vacuum, especially when an
object oriented language is used. In fact, since an object
oriented program is a set of objects that send and receive
messages, object under testing uses to interact with other
objects (see Fig. 1). As a consequence, the problem to face is
to place the object under testing in a simulated environment,
where its interactions with the environment are controlled and,
possibly, verifiable.

Some testing techniques can be adopted to properly
implement unit test, such as stubs [1], server stubs [2], and
mock objects [3]. All these technique, referred as unit testing
techniques in the following, have the same goal: to isolate the
object under testing. With the exception of stubs, this isolation
is reached replacing objects used by the tested object, real
objects in the following; with faker ones (see Fig. 2). In fact,
faker objects can be set to return results useful to properly test
the object under testing. Furthermore, some testing techniques
(e.g. mock objects) also allow to verify if fakers have been

Sharareh Afsharian is with Ericsson Lab Italy, Rome and Computer
Science Department, University of L’Aquila, L’Aquila, Italy (e-mail:
afsharian@ ericsson.com).

Andrea Bei is with Netlab, IASI “Antonio Ruberti” - National Research
Council, Rome, Italy (e-mail: Andrea.Bei@dis.uniroma1.it).

Marco Bianchi is with IASI “Antonio Ruberti” - National Research
Council, Rome, Italy (e-mail: bianchi@iasi.cnr.it).

Fig. 1 An object tested in an uncontrolled environment interacts with
several real objects. These possibly interact with other objects, and so

on

Fig. 2 An effective unit test is run in a controlled environment. Real
objects are replaced by fakers set to return results useful to properly

test the object under testing

properly used by the object under test during the test
execution. Sometimes the adoption of unit testing techniques
becomes a necessity: it happens when the behaviour of real
objects is complex with respect to the test object’s
environment. For example, when a real object does not yet
exist or may change behaviour, or supplies non-deterministic
results (e.g. the current time or the current temperature), or
has states that are difficult to create or reproduce (e.g. a
network error) [3].

Unit testing techniques are often used also during
integration testing. An integration test is a type of testing in
which software and/or hardware components are combined
and tested to confirm that they interact according to their

U

Unit Testing with Déjà-Vu Objects
Sharareh Afsharian, Andrea Bei, and Marco Bianchi

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3496International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

requirements. Integration testing can continue progressively
until the entire system has been integrated [11]. If this is the
case, a system integration plan is necessary. The system
integration plan defines the order of integration, the functional
capability of each version of the system, and responsibilities
for producing ”scaffolding”, code that simulates the function
of nonexistent components [1]. With respect to integration
tests, stubs, server stubs or/and mock objects can be adopted
to simulate components and/or subsystem not still integrated.

The adoption of unit testing techniques also presents some
undesirable side effects, such as more code to implement and
added complexity in the test source code. These drawbacks
are amplified when configuration of fakers needs a lot of
human effort. For example, when a faker object has to return a
large data set as result of a SQL query, the initialization of the
object to be returned can be a very verbose activity.

In our opinion, if you follow a bottom-up development and
testing strategy, the impact of these kinds of side effects could
be reduced delegating real objects to properly configure
fakers. Starting from this idea, we developed a new technique
called déjà-vu object.

A déjà-vu object, déjà-vu in the following, is an object able
to observe and record the behaviour of a real object during
real sessions, and to replace it during tests, returning
previously recorded results. A déjà-vu can be configured to
play the role of a faker as well as possible. In fact, it can
exactly replicate the behaviour of the real object or not: in the
first case, déjà-vu throws an exception, for example, if the
object under test does not respect the exact order of method
calls observed during the real session; in the second case, it is
possible to specify default results for each method among
those have been recorded, or how many times to return a
certain result, and so on. A remarkable feature of a déjà-vu is
the ability to play the role of events source. In fact, it can be
set to reproduce a source of asynchronous message flows,
simulating real timing or not.

The usage of the déjà-vu technique can be useful in several
cases. For example, when a real object:
• requires a lot of time to be properly configured or

dummy programmed;
• requires particular environment resources not available

during the test phase (e.g. software/hardware
resources);

• has states or behaviour that are difficult to create or
reproduce (i.e. the development of a simulation model
and its implementation is burdensome);

• would have to include information and methods
exclusively for testing purposes;

• has a behaviour with an elapsed time too high (e.g.
high response time, rare event generation, ..) to
produce efficient unit test when the test is time
independent.

and the faker object has at least one of the following feature/
requirement:
• objects passed as parameters to or returned by a faker

requires too much time to be properly defined;
• faker has to reproduce an asynchronous flow of events;
• faker has to return real results.
Depending from the context in which it is adopted, it allows

to increase the test portability, and/or the test source code
readability, and/or the ”reliability” of messages exchanged by
object under test and the faker one (since they are derived by
the observation of a real session), and/or to decrease time
spent by programmers to develop test code.

It is worth to note, déjà-vu technique is not applicable when
a top-down development approach (e.g. Test Driven
Development [4]) is adopted, because in this case the real
object does not yet exist or may change behaviour.
Furthermore, in presence of real objects supplying non-
deterministic results, the creation of a déjà-vu object can be
time-expensive, because it can be difficult to establish when
the observation period has to be started and stopped.
This paper is organized as follows: Section II introduces the
déjà-vu object technique. In this section we focus on unit test
and omit integration test. This is justified considering that
integration test is often not regarded as a separate testing step
and, when incremental unit testing is used, it is an implicit part
of the unit test. In Section III, we present two real scenarios in
which déjà-vu objects have been adopted and report about
gotten advantages. Since déjà-vu are related to stubs, servers
stubs, and mock objects, most important difference between
déjà-vu object and these unit test techniques are presented in
Section IV. At last, final remarks and future works are
reported in Section V.

Fig. 3 A track driver calling a real object method on a simple déjà-vu

during the recording phase

II. DEJA-VU OBJECTS
As already stated in Section I, a déjà-vu object is an object

able to observe and record the behaviour of a real object
during real sessions, and to replace it during tests, returning
previously recorded results.

A déjà-vu can be simple or active. A simple déjà-vu is an
object used to replace a real object which methods are invoked
by the class under testing. On other hand, an active déjà-vu is
an object used to replace real object representing a source of
events listened by the class under testing by means of some
callback mechanism in accordance with observer pattern [5].

Both simple and active déjà-vu have the same life cycle
consisting of two main phases: the recording phase and the
simulation phase. In the following subsections these phases
are detailed described and some examples are reported. In

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3497International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

these examples, the API of Déjà-vu Creator is used. Déjà-vu
Creator is a prototype of an open source Java framework we
developed in order to verify the feasibility of the déjà-vu
adoption in several programming contexts.

A. The Recording Phase
The recording phase occurs when a déjà-vu observes the

behaviour of a real object and stores all information needed to
replicate this behaviour during the simulation phase. The
recording phase produces one or more tracks, each one
representing a different usage scenario for the real object.
More precisely, a track is defined as a sequence of records,
each one containing information about a method call invoked
on the real object (i.e. method name, actual parameters, result,
timestamp). All tracks are detailed described into
automatically generated documentation associated to each
déjà-vu object: this documentation is useful both during the
recording and the simulation phase, to check the track
correctness and to support software testers in the choice
ofwhich tracks to use, respectively.
 In order to generate a track, a track driver has to be defined
and executed. Fig. 3 shows a track driver in action: a track

Fig. 4 When the recording phase is performed during a unit test, the

role of track driver is played by the unit test class and the object
under test

driver calls a real object method on a simple déjà-vu. This last
one plays the role of proxy [5] between the track driver and
the real object. In such way the déjà-vu is able to record all
information about messages they exchange.

From the track driver developer’s perspective, the recording
phase consists of the following steps:
i) Obtain an instance of a déjà-vu object. A déjà-vu

reference is obtained passing an instance of the class to
be simulated. If a déjà-vu object has been already
associated to the specified class, new tracks will be
added to the already existing ones. In other words, it is
possible to perform the recording phase every time a
new usage scenario has to be simulated.

ii) Add meta-information about the d ´ej`a-vu object
(optional). Since every déjà-vu has to be detailed
described, some meta-information should be specified,
such as author, date of creation, version number, etc.

iii) Start the track definition. To start the definition of a
track the method record has to be invoked on the déjà-
vu, specifying the name to be assigned to the track.

iv) Add meta information about the track (optional). Also
every tracks should be detailed documented. Some meta-
information should be associated are: name of the

author, date of creation, a brief textual description, etc.
v) Record the track. A track is defined invoking methods

on the déjà-vu as it be the real object.
vi) Stop the track definition. To stop the definition of a track

the method stop has to be invoked on the déjà-vu.

As an example, a piece of code of a track driver is reported:

// create and set (if needed) real object
RealObject realObj = new RealObject(...);

// create dejavu object
DejavuRealObject dejavu =
(DejavuRealObject)DejavuFactory.getSimpleDejavu(realObj);

dejavu.setDescription("...");

// define a session
dejavu.record("Track01");
dejavu.setTrackDescription("A track example");

dejavu.aMethodOfRealObject("aString");
dejavu.anotherMethodOfRealObject(newInteger(261204));
dejavu.aMethodOfRealObject("anotherString");

dejavu.stop();

 In this example a déjà-vu object is associated to the
RealObject class and a track, labelled Track01, is added.
Track01 consists of the following sequence of records
containing something like:

Method call Actual parameters Result
AMethodOfRealObject ”aString” void
AnotherMethodOfRealObject new Integer(10) 100
AMethodOfRealObject ”anotherString” void

where, the invoked methods have the following signatures:

void aMethodOfRealObject (String s);
int anotherMethodOfRealObject(Integer i)

throws ExampleException;

 The method getSimpleDejavu analyses the RealObject
instance, creates and returns an instance of the class
DejavuRealObject. This class has to be previously
generated by Déjà-vu Creator. That instance is used by track
driver to perform the recording phase.

A track can be also defined to terminate throwing an
exception, invoking the generateException method
provided by the déjà-vu object. For example:

dejavu.aMethodOfRealObject("anotherString");
dejavu.generateException(

new ExampleException(...),
dejavu.LAST_CALL);

forces the track to generate the specified
ExceptionClassName instance during the simulation of the
last method invoked (aMethodOfRealObject). Note that the
generateException method checks if the
aMethodOfRealObject can really throw an
ExceptionClassName instance.

It is worth to note the recording phase of a simple déjà-vu
can be also performed during a unit test. In fact, the role of
track driver can be played by the pair: unit test class and class

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3498International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

under test. If this is the case, operations concerning the track
definition (step v) are contained in the object under test and,
consequently, the readability of the unit test class source is
further increased.

The recording phase of an active déjà-vu is slightly
different. In this case track driver has only to create the déjà-
vu and to invoke the record and, after a time, the stop
methods. If needed, a track driver can also subscribe itself as
listener of events generated by the real object as shown in Fig.
5.

B. The Simulation Phase
The simulation phase occurs when a déjà-vu plays the role

of the faker depicted in Fig. 2.
In order to perform the simulation phase a software tester

has to create the déjà-vu associated to the real class to be
simulated. Then, the software tester has to create a track
consistent with the unit test to be performed. At last, he/she
can implement a unit test in which the déjà-vu is loaded,
configured, used instead of the real object and verified. More
in details, from the software tester’s perspective, the
simulation phase consists of the following steps:
i) Obtain an instance of a déjà-vu. A déjà-vu object can be

obtained specifying the name of the class to be
simulated.

ii) Load the track to be used. To load the a track the load
method has to be invoked on the déjà-vu, specifying the
name of the track.

iii) Configure the track (optional). By default, the class
under test has to exactly replicate the sequence of call
methods defined during the recording phase (i.e. same
order of invocation methods with same parameters). In
order to increase re-usability of tracks, this default
behaviour can be modified. For example, it should be
convenient to define default results for each method
among those have been recorded, or how many times to
return a certain result and so on. An active déjà-vu can
be configured to respect or not the recorded timing.

iv) Replace the real object with the déjà-vu object.
Strategies aimed to replace a real object with a faker are
out of the scope of this paper. Nevertheless, several
strategies have already available in literature. Refer to
mock object Web site [7] for more details.

v) Run the unit test suite.
vi) Verify the déjà-vu consistency. Verify that the track has

been used according to rules defined in step 3. To verify
the déjà-vu consistency the verify method has to be
invoked on the déjà-vu.

For example, the following piece of code – extracted froma

JUnit [9] test case – uses the previously recorded Track01.

// get dejavu reference
DejavuRealObject dejavu =

(DejavuRealObject) DejavuFactory.get("RealObject");

// load a session
dejavu.loadSession("Track01");

Fig. 5 Recording phase of an active déjà-vu

 // use dejavu instead real object

TestedClass testedObject =
new TestedClass((RealObject) dejavu);

// perform JUnit test.
assert...(..., testedObject.methodToTest(...));

// verify deja-vu consistency
dejavu.verify();

In this example, the déjà-vu associated to RealObject is

used by the testedObject when the methodToTest is
invoked. Since the default behaviour of Track01 has not been
modified, all the domain code behind the methodToTest has
to exactly replicate the session defined during the recording
phase. For example, the following sequence of instructions
does not generate exceptions:

...
realObject.aMethodOfRealObject("aString");
...
Integer integer = new Integer(261204);
realObject.anotherMethodOfRealObject(integer);
...
String string = "anotherString";
realObject.aMethodOfRealObject(string);
...

where the realObject refers to the déjà-vu object. On the
contrary, if you change, for example, the order of the methods
call sequence, or call another method of RealObject, a
TrackException will be thrown. Finally, the verify()
method check if all methods defined in Track01 have been
called during the test execution.

III. USAGE SCENARIOS
Déjà-vu object technique is been already usefully used in

two different contexts.
The first context concerns services for information sharing

in distributed environments. More precisely, the aim of a
workpackage of the “FIRB Wide-scalE, Broadband,
MIddleware for Network Distributed Services” (WebMINDS)
project [12] was the development of a PhD-level e-learning

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3499International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

and course-ware system, called WebMINDS E-learning
System (WES). The main functionality of WES is to allow
semantic searches and retrieval of SCORM [13] compliant
learning objects stored by several heterogeneous and
distributed repositories. From the architectural point of view,
WES is composed by four subsystems: a Web portal, the user
front-end; a semantic search engine; a set of repositories
containing leaning objects; and a communication
infrastructure, used by the other subsystems to exchange
messages. The last subsystem is induced by a non functional
requirement depicting a scenario in which Web portal,
semantic search engine and repositories run on different
machines connected by the Internet. During the testing activity
of WES, several déjà-vu objects have been created and used.
For example, the communication infrastructure subsystem
offers to Web portal developers a Java class exposing the
following public interface:

public class SemanticSearchEngine {

public LOQueryResult[] executeQuery(QueryMetadata q);
public DownloadedLO getLO(LObject lo);

}

The SemanticSearchEngine class plays the role of

façade [5], hiding to Web portal developers the presence of
some Web services allowing query executions and learning
object downloads. A DejavuSemanticSearchEngine class
was created and several tracks have been recorded, one for
each use case scenario. This déjà-vu has been released to Web
portal developers, which used it during testing activity of their
subsystem. We notice the adoption of déjà-vu objects
involved several benefits both for communication
infrastructure and Web portal developers. From the
communication infrastructure developers point of view, each
recorded track represented the ”proof” of a well-implemented
use case. Furthermore, the cost of recording phase was very
low, because all tracks have been recorded during integration
tests involving the communication infrastructure, the semantic
search engine and the repositories subsystems. On other
hands, Web portal developers can immediately start unit and
integration tests without configure any faker object.

The second context in which we used déjà-vu technique
concerns a telephone communication accounting system. The
main functionalities of an accounting system is gather, store
and report data related to the inbound and outbound phone
communication traffic related to an organisation. These
functionalities are aimed to bill the calls cost to the correct
organizational units and optimise carrier contracts in regard to
the effective use of the service. From a technical point of view
the telephone communication traffic is managed by a device
called PABX [14]. Late models of PABX device send data
about phone calls on the network in a standard application
protocol called ECMA-CSTA [15]. For each call the PABX
sends data such as caller id, called id, begin call time stamp,
end call time stamp, carrier and so on. The accounting system
was implemented as a layered Web-based application,
containing at the bottom layer both database and network

communication services. In this scenario an active déjà-vu
object was used to simulate an observable object representing
a PABX Java adapter [5]. This object receives packets sent by
PABX and triggers a call-back method to parse their payloads
and to store data in a database. Thanks to the adoption of the
déjà-vu object technique it was possible to implement unit
tests using a PABX faker able to simulate an asynchronous
data source. In fact, at first we recorded several tracks in
production environment, each one representing a different
traffic condition. Then, we used them to replicate PABX
activities in testing environment. It is worth to note, the
development of a PABX simulation model and its
implementation would have been burdensome. Infact, it is not
easy create a PABX simulator because its behaviour may be
very complex under certain traffic condition.

IV. RELATED WORKS
Since déjà-vu object are related to stubs, server stubs and

mock objects, it is seasonable to compare our proposal with
these already existing unit testing techniques. On account of
exposition completeness, we also briefly summarise the main
idea underling these ones.

A. Stubs
A stub method, in short stub, is a piece of code used to

stand in for some other programming functionality. Each stub
method contains code able to return an object or a value useful
to run correctly tests.

The following class is an example of a stub implementation
of an hypothetical Thermometer class:

class Thermometer {

Device thermometerDevice;
...
double getTemperature()throws ThermometerException {

if (debug) {
return debugTemp;

} else {
thermometerDevice.getCurrentTemp();

}
}

}

The main drawbacks affecting the stub method technique
are:
• the testing code is mixed with the domain class code:

this is a not good practise.
• When the behaviour to be simulated is not trivial, their

code can become more and more complex and,
consequently, error prone and hard to maintain (e.g. the
above implementation of Thermometer it is simple,
but it does not simulate any exception condition);

• during tests, real object method calls are not executed
(e.g. getCurrentTemp() method). As a consequence,
possible error due to a wrong usage of real objects
interface is not detected by tests.

With respect to stubs, déjà-vu objects overcome the above
limitations. In fact, the adoption of déjà-vu object implies:
• the code of the class under test does not contains any

line of code belonging to the testing domain;

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3500International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

• the complexity of real object behaviour does not have
impacts at coding level and bring out only a major
number of tracks to record;

• the real object methods are really invoked.

B. Server Stub
A server stub [2] is a simulation of an object or component.

It should exactly replace a component in a system for test or
prototyping purposes, but remain lightweight.

Main concerns about using server stubs are: that stubs can
be to hard to write, that the cost of developing and
maintaining stubs can be too high and that switching between
stub and production code can be risky.

With respect to server stubs, déjà-vu objects are
automatically generated as result of a recording activity. This
recording activity is less expensive of developing a server
stub. Furthermore, déjà-vu objects do not present maintenance
problems. In fact if the real object modify its behaviour all
tracks can be simply updated repeating the execution of the
associated tracks drivers.

At last, if déjà-vu and real objects are synchronised, the risk
of problems during the switch between déjà-vu and
production code is negligible.

C. Mock Objects
A mock [3] is a faker object that mimics the behaviour of a

real object in controlled way.
The first important difference between mock and déjà-vu

concerns their applicability context. Mock object was
prevalently designed to be bundled in extreme programming
[6] approaches, where the test is used to design the software
architecture and mocks play the role of not yet implemented
classes [10]. In contrast déjà-vu object technique is not
applicable when a top-down development approach is
adopted, because in this case the real object does not yet exist
or may change behaviour.

On other hand, when real objects already exist, the training
phase of mock objects could be a time consuming activity. In
these cases the adoption of déjà-vu object technique reduces
the time spent for setting expectations and, at the same time,
allows to use real results during tests.

Another important difference between mock object and
déjà-vu arises from the comparison of their life cycles. In
general, mock objects accomplish the following pattern [8] for
their usage in unit tests:
i) Create an instance of mock object.

ii) Set state in the mock object: set any parameters or
attribute that could be used by the object to test).

iii) Set expectations in the mock object: setting expectations
in mock object is where the desired or expected
outcome is set. This includes the number of method call
and returned value of mock object invocations.

iv) Set invoke domain code with mock object: when all of
the expectations have been set, use the mock object
within the domain code.

v) Verify consistency in the mock object: A common

practice within mock object testing is to implement a
“verify” method, which is called as a final step in the
test to verify that the expected outcomes match the
actual.

With respect to the mock object life cycle, déjà-vu
technique splits the training and the usage phases. This has
two positive consequences: at first the unit test code is more
readable. Then these two activities can be accomplished in
different time, even by different developers.

Finally, at best of our knowledge, mock objects can not
simply replace event sources.

V. CONCLUSION AND FURTHER WORK
In this paper the déjà-vu object unit test technique has been

presented and compared with the already existing ones.
Furthermore, we presented two usage scenarios in which déjà-
vu technique has been successfully adopted.

Our current research activity is focusing on an interesting
evolution of déjà-vu object technique, called déjà-vu session.
A déjà-vu session is an object able to observe and record the
behaviour of several real objects during a real session, and to
replace all them during tests, returning previously recorded
results. This new kind of objects inherits all advantages
deriving by déjà-vu objects usage. In addition, they further
decrease time needed to develop unit tests using several faker
objects and allow the definition and verification of sessions
involving several real objects.

REFERENCES
[1] G.J.Myers. The Art of Software Testing (second edition), John Wiley &

Sons, Inc. 2004.
[2] R.Binder. Testing object-oriented systems: models, patterns, and tools,

Reading Mass.: Addison-Wesley, 1999.
[3] T.Mackinnon, S.Freeman, P.Craig. ”Endo-Testing: Unit Testing with

Mock Objects”, in Proceedings of the International Conference on
eXtreme Programming and Flexible Process in Software Engineering
(XP2000), 2000.

[4] K.Beck. Test-Driven Develpment by example, Addison-Wesley, 2003.
[5] E.Gamma, R.Helm, R.Johnson, J.Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software, Addison Wesley, 1994.
[6] K.Beck. Extreme programming explained: embrace change, Addison-

Wesley, 1999.
[7] Mock object Web site, http://www.mockobjects.com
[8] M.A.Brown, E.Tapolcsanyi. ”Mock object patters”, in Proceedings of

The 10th Conference on Pattern Languages of Programs (PLOP03),
2003.

[9] V.Massol JUnit in action, Manning, 2004.
[10] S.Freeman, N.Pryce, T.Mackinnon, J.Walnes ”Mock roles, not objects”,

in Proceedings of the 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2004).

[11] The Free Dictionary, Farlex, Inc., 2006 http://computingdictionary.
thefreedictionary.com

[12] The WebMINDS Project Web site, http://web-minds.consorzio-cini.it/
[13] Advanced Distributed Learning Web site, http://www.adlnet.gov/
[14] Wikipedia – The free encyclopedia 2006, PABX definition,

http://en.wikipedia.org/wiki/PABX
[15] Ecma International Web site, http://www.ecma-international.org/

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3501International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
45

.p
df

