Search results for: Kohonen self-organizing maps
245 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multicomponent objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.
Keywords: Kohonen self-organizing maps, clusterization, multicomponent solutions, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761244 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: Classification, SOFM, neural network, RGB images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317243 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks
Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121242 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: Segmentation, color-texture, neural networks, fractal, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374241 Day Type Identification for Algerian Electricity Load using Kohonen Maps
Authors: Mohamed Tarek Khadir, Damien Fay, Ahmed Boughrira
Abstract:
Short term electricity demand forecasts are required by power utilities for efficient operation of the power grid. In a competitive market environment, suppliers and large consumers also require short term forecasts in order to estimate their energy requirements in advance. Electricity demand is influenced (among other things) by the day of the week, the time of year and special periods and/or days such as Ramadhan, all of which must be identified prior to modelling. This identification, known as day-type identification, must be included in the modelling stage either by segmenting the data and modelling each day-type separately or by including the day-type as an input. Day-type identification is the main focus of this paper. A Kohonen map is employed to identify the separate day-types in Algerian data.Keywords: Day type identification, electricity Load, Kohonenmaps, load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787240 Self Organizing Analysis Platform for Wear Particle
Authors: Qurban A. Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Neural Network, Relationship Measurement, Selforganizing Clusters, Wear Particle Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212239 Automatically-generated Concept Maps as a Learning Tool
Authors: Xia Lin
Abstract:
Concept maps can be generated manually or automatically. It is important to recognize differences of the two types of concept maps. The automatically generated concept maps are dynamic, interactive, and full of associations between the terms on the maps and the underlying documents. Through a specific concept mapping system, Visual Concept Explorer (VCE), this paper discusses how automatically generated concept maps are different from manually generated concept maps and how different applications and learning opportunities might be created with the automatically generated concept maps. The paper presents several examples of learning strategies that take advantages of the automatically generated concept maps for concept learning and exploration.Keywords: Concept maps, Dynamic concept representation, learning strategies, visual interface, Visual Concept Explorer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512238 Definition of Foot Size Model using Kohonen Network
Authors: Khawla Ben Abderrahim
Abstract:
In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555237 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051236 Approximately Jordan Maps and Their Stability
Authors: Nasrin Eghbali
Abstract:
In this paper we consider the approximate Jordan maps and boundedness of these maps. Also we investigate the stability of approximate Jordan maps and prove some stability properties for approximate Jordan maps.
Keywords: Approximate Jordan map, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331235 Complexity of Multivalued Maps
Authors: David Sherwell, Vivien Visaya
Abstract:
We consider the topological entropy of maps that in general, cannot be described by one-dimensional dynamics. In particular, we show that for a multivalued map F generated by singlevalued maps, the topological entropy of any of the single-value map bounds the topological entropy of F from below.Keywords: Multivalued maps, Topological entropy, Selectors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250234 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images
Authors: Mario Mastriani
Abstract:
This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734233 The Stability of Almost n-multiplicative Maps in Fuzzy Normed Spaces
Authors: E. Ansari-Piri, N. Eghbali
Abstract:
Let A and B be two linear algebras. A linear map ϕ : A → B is called an n-homomorphism if ϕ(a1...an) = ϕ(a1)...ϕ(an) for all a1, ..., an ∈ A. In this note we have a verification on the behavior of almost n-multiplicative linear maps with n > 2 in the fuzzy normed spaces
Keywords: Almost multiplicative maps, n-homomorphism maps, almost n-multiplicative maps, fuzzy normed space, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280232 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518231 Building Relationship Network for Machine Analysis from Wear Debris Measurements
Authors: Qurban A Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937230 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776229 Investigation of Some Methodologies in Providing Erosion Maps of Surface, Rill and Gully and Erosion Features
Authors: A. Mohammadi Torkashvand, N. Haghighat
Abstract:
Some methodologies were compared in providing erosion maps of surface, rill and gully and erosion features, in research which took place in the Varamin sub-basin, north-east Tehran, Iran. A photomorphic unit map was produced from processed satellite images, and four other maps were prepared by the integration of different data layers, including slope, plant cover, geology, land use, rocks erodibility and land units. Comparison of ground truth maps of erosion types and working unit maps indicated that the integration of land use, land units and rocks erodibility layers with satellite image photomorphic units maps provide the best methods in producing erosion types maps.Keywords: Erosion Features, Geographic Information System, Remote Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779228 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality
Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang
Abstract:
The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541227 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562226 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps
Authors: Engin Yesil, Leon Urbas
Abstract:
Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840225 Control Chart Pattern Recognition Using Wavelet Based Neural Networks
Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim
Abstract:
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.
Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480224 Application of Geographic Information Systems(GIS) in the History of Cartography
Authors: Bangbo Hu
Abstract:
This paper discusses applications of a revolutionary information technology, Geographic Information Systems (GIS), in the field of the history of cartography by examples, including assessing accuracy of early maps, establishing a database of places and historical administrative units in history, integrating early maps in GIS or digital images, and analyzing social, political, and economic information related to production of early maps. GIS provides a new mean to evaluate the accuracy of early maps. Four basic steps using GIS for this type of study are discussed. In addition, several historical geographical information systems are introduced. These include China Historical Geographic Information Systems (CHGIS), the United States National Historical Geographic Information System (NHGIS), and the Great Britain Historical Geographical Information System. GIS also provides digital means to display and analyze the spatial information on the early maps or to layer them with modern spatial data. How GIS relational data structure may be used to analyze social, political, and economic information related to production of early maps is also discussed in this paper. Through discussion on these examples, this paper reveals value of GIS applications in this field.Keywords: Cartography, GIS, history, maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155223 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541222 Buzan Mind Mapping: An Efficient Technique for Note-Taking
Authors: T. K. Tee, M. N. A. Azman, S. Mohamed, Muhammad, M., M. M. Mohamad, J. Md Yunos, M. H. Yee, W. Othman
Abstract:
Buzan mind mapping is an efficient system of note-taking that makes revision a fun thing to do for students. Tony Buzan has been teaching children all over the world for the past thirty years and has proved that mind maps are the magic formula in the classroom for everyone. The purpose of this paper is to discuss the importance of Buzan mind mapping as a note-taking technique for the secondary school students. This paper also examines the mind mapping technique, advantages and disadvantages of hand-drawn mind maps. Samples of students’ mind maps were presented and discussed.
Keywords: Buzan Mind Mapping, note-taking technique, hand-drawn mind maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9388221 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables
Authors: M. Hamdi, R. Rhouma, S. Belghith
Abstract:
Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.
Keywords: Chaotic map, Cryptography, Random Numbers, Statistical tests, S-box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867220 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices
Authors: František Včelař, Zuzana Pátíková
Abstract:
Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.Keywords: Fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110219 Digital Geomatics Trends for Production and Updating Topographic Map by Using Digital Generalization Procedures
Authors: O. Z. Jasim
Abstract:
An accuracy digital map must satisfy the users for two main requirements, first, map must be visually readable and second, all the map elements must be in a good representation. These two requirements hold especially true for map generalization which aims at simplifying the representation of cartographic data. Different scales of maps are very important for any decision in any maps with different scales such as master plan and all the infrastructures maps in civil engineering. Cartographer cannot project the data onto a piece of paper, but he has to worry about its readability. The map layout of any geodatabase is very important, this layout is help to read, analyze or extract information from the map. There are many principles and guidelines of generalization that can be find in the cartographic literature. A manual reduction method for generalization depends on experience of map maker and therefore produces incompatible results. Digital generalization, rooted from conventional cartography, has become an increasing concern in both Geographic Information System (GIS) and mapping fields. This project is intended to review the state of the art of the new technology and help to understand the needs and plans for the implementation of digital generalization capability as well as increase the knowledge of production topographic maps.
Keywords: Cartography, digital generalization, mapping, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288218 Research Topic Map Construction
Authors: Hei-Chia Wang, Che-Tsung Yang
Abstract:
While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.Keywords: Ontology, topic maps, social information, co-authorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804217 Analysis and Design Business Directory for Micro, Small and Medium Enterprises using Google Maps API and Multimedia
Authors: Suselo Thomas, Suyoto, Dwiandiyanta B. Yudi
Abstract:
This paper explain about analysis and design a business directory for micro-scale businesses, small and medium enterprises (SMEs). Business Directory, if implemented will facilitate and optimize the access of SMEs to ease suppliers access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a webbased Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. The method used to achieve the goal are: observation; interviews; modeling and classifying business directory for SMEs.
Keywords: Business directories, SMEs, Google maps API, multimedia, geocoding ommas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126216 Analysis of Road Repairs in Undermined Areas
Authors: Tomáš Seidler, Marek Mihola, Denisa Cihlarova
Abstract:
The article presents analysis results of maps of expected subsidence in undermined areas for road repair management. The analysis was done in the area of Karvina district in the Czech Republic, including undermined areas with ongoing deep mining activities or finished deep mining in years 2003 - 2009. The article discusses the possibilities of local road maintenance authorities to determine areas that will need most repairs in the future with limited data available. Using the expected subsidence maps new map of surface curvature was calculated. Combined with road maps and historical data about repairs the result came for five main categories of undermined areas, proving very simple tool for management.Keywords: GIS, Map of Subsidence, Road, Undermined Area
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325