Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: geocoding ommas.

5 Analysis and Design Business Directory for Micro, Small and Medium Enterprises using Google Maps API and Multimedia

Authors: Suselo Thomas, Suyoto, Dwiandiyanta B. Yudi

Abstract:

This paper explain about analysis and design a business directory for micro-scale businesses, small and medium enterprises (SMEs). Business Directory, if implemented will facilitate and optimize the access of SMEs to ease suppliers access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a webbased Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. The method used to achieve the goal are: observation; interviews; modeling and classifying business directory for SMEs.

Keywords: Business directories, SMEs, Google maps API, multimedia, geocoding ommas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
4 A Strategy for Address Coding from HouseHold Registry Database

Authors: Yungchien Cheng, Chienmin Chu

Abstract:

Address Matching is an important application of Geographic Information System (GIS). Prior to Address Matching working, obtaining X,Y coordinates is necessary, which process is calling Address Geocoding. This study will illustrate the effective address geocoding process of using household registry database, and the check system for geocoded address.

Keywords: GIS, Address Geocoding, HouseHold Registry Database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
3 Prototype of Business Directory for Micro, Small and Medium Enterprises Using Google Maps API and Multimedia

Authors: Suselo Thomas, Suyoto, Dwiandiyanta B. Yudi

Abstract:

This paper explain about prototype of a business directory for micro-scale businesses, small and medium enterprises (SMEs), the third phase of the research. The third phase is the phase of software development based on the model of SME business directory that had been developed, to create prototype software SME business directory. In the fourth phase, namely the implementation, these units have been developed are tested to obtain input from potential users. The fifth phase is the testing phase to determine the strengths and weaknesses of software has been developed. The result of this phase is the software in the form of on-line (web based) and multimedia-based. Business Directory, if implemented will facilitate and optimize the access of SMEs to ease supplier access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a web-based Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. Methodology used to achieve the goal: observation, interviews, modeling and classifying business directory for SMEs. 

Keywords: Business directories, SMEs, Google Maps API, Multimedia, Prototype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
2 Integrating Geographic Information into Diabetes Disease Management

Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng

Abstract:

Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.

Keywords: Geocoding, chronic disease management, quality of diabetes care, rate ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: Mortality map, spatial patterns, statistical area, variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619