Search results for: Hydrodynamic initiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 238

Search results for: Hydrodynamic initiation

238 The Study of Chain Initiation Effect on the Direct Initiation of Detonation

Authors: Masoud Afrand, Saeid Farahat, Mehdi Alamkar

Abstract:

In this research, effect of combustion reaction mechanism on direct initiation of detonation has been studied numerically. For this purpose, reaction mechanism has been simulated by using a three-step chemical kinetics model. The reaction scheme consists sequentially of a chain-initiation and chainbranching step, followed by a temperature -independent chaintermination. In a previous research, the effect of chain-branching on the direct initiation of detonation is studied. In this research effect of chain-initiation on direct initiation of detonation is investigated. For the investigation, first a characteristic time (τ) for each step of mechanism, which includes effect of different kinetics parameters, is defined. Then the effect of characteristic time of chain-initiation (τI) on critical initiation energy is studied. It is seen that increasing τI, causes critical initiation energy to be increased. Drawing detonation's shock pressure diagrams for different cases, shows that in small value of τI , kinetics has more important effect on the behavior of the wave.

Keywords: Detonation initiation, Initiation energy, Reaction rate, Characteristic time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
237 Fatigue Crack Initiation of Al-Alloys “Effect of Heat Treatment Condition”

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 Al-alloys under constant amplitude loading. In initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress. 

Keywords: Fatigue crack initiation, Al-Alloy, mean stress, heat treatment state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
236 Investigating the Fatigue Crack Initiation Location in Interference Fitted and/or bolt Clamped Al 2024-T3 Double Shear Lap Joints

Authors: Babak Abazadeh, Hadi Rezghi Maleki

Abstract:

In this paper the fatigue crack initiation location of double shear lap joints, treated by interference fit and bolt clamping, have been investigated both experimentally and numerically. To do so, using the fracture section of available fatigue tested specimens of interference fitted and torque tightened Aluminum 2024-T3 plates, the crack initiation location was determined. The stress distribution attained from the finite element analysis was used to help explain the results observed in the experimental tests. The results showed that the fatigue crack initiation location changes from top and mid plane at the hole edge to somewhere far from the hole edge (stress concentration region) in different combination of clamping force, interference fit size and applied cyclic load ranges. It is worth mentioning that the fatigue crack initiation location affects the fatigue life of the specimens too.

Keywords: Fatigue crack initiation, interference fit, bolt clamping, double shear lap joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
235 Stress Ratio and Notch Effect on Fatigue Crack Initiation and Propagation in 2024 Al-alloy

Authors: N. Benachour, A. Hadjoui, M. Benachour, M. Benguediab

Abstract:

This study reports an empirical investigation of fatigue crack initiation and propagation in 2024 T351 aluminium alloy using constant amplitude loading. In initiation stage, local strain approach at the notch was used and in stable propagation stage NASGRO model was applied. In this investigation, the flat plate of double through crack at hole is used. Based on experimental results (AFGROW Database), effect of stress ratio, R, is highlights on fatigue initiation life (FIL) and fatigue crack growth rate (FCGR). The increasing of dimension of hole characterizing the notch effect decrease the fatigue life.

Keywords: Fatigue crack growth, initiation life, Al-Alloy, stressratio, notch effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
234 Slug Initiation Evaluation in Long Horizontal Channels Experimentally

Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi

Abstract:

In this paper, the effect of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cm10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.

Keywords: Liquid holdup, Long horizontal channel, Slug initiation position, Superficial inlet velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
233 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
232 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
231 Slug Tracking Simulation of Severe Slugging Experiments

Authors: Tor Kindsbekken Kjeldby, Ruud Henkes, Ole Jørgen Nydal

Abstract:

Experimental data from an atmospheric air/water terrain slugging case has been made available by the Shell Amsterdam research center, and has been subject to numerical simulation and comparison with a one-dimensional two-phase slug tracking simulator under development at the Norwegian University of Science and Technology. The code is based on tracking of liquid slugs in pipelines by use of a Lagrangian grid formulation implemented in Cµ by use of object oriented techniques. An existing hybrid spatial discretization scheme is tested, in which the stratified regions are modelled by the two-fluid model. The slug regions are treated incompressible, thus requiring a single momentum balance over the whole slug. Upon comparison with the experimental data, the period of the simulated severe slugging cycle is observed to be sensitive to slug generation in the horizontal parts of the system. Two different slug initiation methods have been tested with the slug tracking code, and grid dependency has been investigated.

Keywords: Hydrodynamic initiation, slug tracking, terrain slugging, two-fluid model, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221
230 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová

Abstract:

The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping.

Keywords: CFD modeling, hydrodynamic gap, matrices of mass, stiffness and damping, nonlinear mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
229 Fatigue Crack Initiation and Propagation through Residual Stress Field

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this paper fatigue crack initiation and propagation in notched plate under constant amplitude loading through tensile residual stress field of 2024 T351 Al-alloy plate were investigated. Residual stress field was generated by plastic deformation using finite element method (FEM) where isotropic hardening in Von Mises model was applied. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses at notch (hole) reduces considerably the total fatigue life. It was shown that the decreasing in stress reduces the fatigue crack growth rates.

Keywords: Residual stress, fatigue crack initiation, fatigue crack growth, Al-alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718
228 Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid

Authors: M. H. Pol, A. Bidi, A. V. Hoseini

Abstract:

Estimation of natural frequency of structures is very important and isn-t usually calculated simply and sometimes complicated. Lack of knowledge about that caused hard damage and hazardous effects. In this paper, with using from two different models in FEM method and based on hydrodynamic mass of fluids, natural frequency of an especial bearing (Fig. 1) in an electric field (or, a periodic force) is calculated in different stiffness and different geometric. In final, the results of two models and analytical solution are compared.

Keywords: Natural frequency of the bearing, Hydrodynamic mass of fluid method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
227 Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution

Authors: M. Pasbani Khiavi, M. A. Ghorbani

Abstract:

This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.

Keywords: Dam, Reservoir, Analytical solution, Vertical component, Earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
226 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: Crack initiation, fatigue reliability, inspection planning, welded joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
225 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell

Authors: Narcis C. Ostahie, Tudor Sajin

Abstract:

In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.

Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
224 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation

Authors: Mahdi Asghari

Abstract:

The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.

Keywords: Cavitation, hydrodynamic cavitation, cavitation reactor, fuel oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
223 Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves

Authors: Roozbeh Mansouri, Hassan Hadidi

Abstract:

Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.

Keywords: Truss Spar, Hydrodynamic analysis, Wave spectrum, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
222 Numerical Modelling of Crack Initiation around a Wellbore Due to Explosion

Authors: Meysam Lak, Mohammad Fatehi Marji, Alireza Yarahamdi Bafghi, Abolfazl Abdollahipour

Abstract:

A wellbore is a hole that is drilled to aid in the exploration and recovery of natural resources including oil and gas. Occasionally, in order to increase productivity index and porosity of the wellbore and reservoir, the well stimulation methods have been used. Hydraulic fracturing is one of these methods. Moreover, several explosions at the end of the well can stimulate the reservoir and create fractures around it. In this study, crack initiation in rock around the wellbore has been numerically modeled due to explosion. One, two, three, and four pairs of explosion have been set at the end of the wellbore on its wall. After each stage of the explosion, results have been presented and discussed. Results show that this method can initiate and probably propagate several fractures around the wellbore.

Keywords: Crack initiation, explosion, finite difference modelling, well productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
221 Failure Analysis of a Medium Duty Vehicle Leaf Spring

Authors: Gül Çevik

Abstract:

This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.

Keywords: Leaf spring, failure analysis, fatigue, fractography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
220 Quasi-ballistic Transport in Submicron Hg0.8Cd0.2Te Diodes: Hydrodynamic Modeling

Authors: M. Daoudi, A. Belghachi, L. Varani

Abstract:

In this paper, we analyze the problem of quasiballistic electron transport in ultra small of mercury -cadmiumtelluride (Hg0.8Cd0.2Te -MCT) n+-n- n+ devices from hydrodynamic point view. From our study, we note that, when the size of the active layer is low than 0.1μm and for low bias application( ( ≥ 9mV), the quasi-ballistic transport has an important effect.

Keywords: Hg0.8Cd0.2Te semiconductor, Hydrodynamicmode, Quasi-ballistic transport, Submicron diode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
219 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud

Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova

Abstract:

Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.

Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
218 A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach

Authors: Osama A. Marzouk

Abstract:

We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.

Keywords: reduced-order model, wake oscillator, nonlinear, ODEsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
217 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

Authors: A. F. Khadrawi

Abstract:

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time  on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as  increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as  increases. Also, the slip in the thermal boundary condition increases as  decreases especially the early stage of time.

Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
216 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer

Authors: Xing Feng, Yuanbin Li

Abstract:

Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.

Keywords: Curved plane oil skimmer, flow channel, CFD, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
215 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis

Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin

Abstract:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
214 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation

Authors: L. Grinis, V. Haslavsky

Abstract:

Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.

Keywords: Drilling, stuck-pipe, vibration, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
213 Hydrodynamic Characteristics of a New Sewer Overflow Screening Device: CFD Modeling & Analytical Study

Authors: M. A. Aziz, M. A. Imteaz, J. Naser, D. I. Phillips

Abstract:

Some of the major concerns regarding sewer overflows to receiving water bodies include serious environmental, aesthetic and public health problems. A noble self-cleansing sewer overflow screening device having a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants has been investigated. Computational Fluid Dynamics (CFD) techniques are used to simulate the flow phenomena with two different inlet orientations; parallel and perpendicular to the weir direction. CFD simulation results are compared with analytical results. Numerical results show that the flow is not uniform (across the width of the inclined surface) near the top of the inclined surface. The flow becomes uniform near the bottom of the inclined surface, with significant increase of shear stress. The simulation results promises for an effective and efficient self-cleansing sewer overflow screening device by comparing hydrodynamic results.

Keywords: Hydrodynamic Characteristics, Ogee Spillway, Screening, Sewer Overflow Device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
212 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: Performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
211 Hydrodynamic Modeling of a Surface Water Treatment Pilot Plant

Authors: C.-M. Militaru, A. Pǎcalǎ, I. Vlaicu, K. Bodor, G.-A. Dumitrel, T. Todinca

Abstract:

A mathematical model for the hydrodynamics of a surface water treatment pilot plant was developed and validated by the determination of the residence time distribution (RTD) for the main equipments of the unit. The well known models of ideal/real mixing, ideal displacement (plug flow) and (one-dimensional axial) dispersion model were combined in order to identify the structure that gives the best fitting of the experimental data for each equipment of the pilot plant. RTD experimental results have shown that pilot plant hydrodynamics can be quite well approximated by a combination of simple mathematical models, structure which is suitable for engineering applications. Validated hydrodynamic models will be further used in the evaluation and selection of the most suitable coagulation-flocculation reagents, optimum operating conditions (injection point, reaction times, etc.), in order to improve the quality of the drinking water.

Keywords: drinking water, hydrodynamic modeling, pilot plant, residence time distribution, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
210 Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates

Authors: A. Al-Shyyab, A. F. Khadrawi

Abstract:

The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as  increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as  increases.

Keywords: Converging plates, hydrodynamic behavior, microplates, microchannel, slip velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
209 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.

Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304