Search results for: Hierarchical K-mean like clustering (HKM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 612

Search results for: Hierarchical K-mean like clustering (HKM)

612 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.

Keywords: Clustering, method, algorithm, hierarchical, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378
611 A Review: Comparative Study of Enhanced Hierarchical Clustering Protocols in WSN

Authors: M. Sangeetha, A. Sabari, T. Shanthi Priya

Abstract:

Recent advances in wireless networking technologies introduce several energy aware routing protocols in sensor networks. Such protocols aim to extend the lifetime of network by reducing the energy consumption of nodes. Many researchers are looking for certain challenges that are predominant in the grounds of energy consumption. One such protocol that addresses this energy consumption issue is ‘Cluster based hierarchical routing protocol’. In this paper, we intend to discuss some of the major hierarchical routing protocols adhering towards sensor networks. Furthermore, we examine and compare several aspects and characteristics of few widely explored hierarchical clustering protocols, and its operations in wireless sensor networks (WSN). This paper also presents a discussion on the future research topics and the challenges of hierarchical clustering in WSNs.

Keywords: Clustering, Energy Efficiency, Hierarchical routing, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
610 Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures

Authors: Salima Kouici, Abdelkader Khelladi

Abstract:

In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied.

Keywords: Binary data, similarity measure, Tθ measures, Agglomerative Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
609 Journey on Image Clustering Based on Color Composition

Authors: Achmad Nizar Hidayanto, Elisabeth Martha Koeanan

Abstract:

Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.

Keywords: Image clustering, feature extraction, RGB, HSV, L*a*b*, Gaussian Mixture Model (GMM), histogram, Agglomerative Hierarchical Clustering (AHC), K-Means, Expectation-Maximization (EM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
608 Fuzzy Hierarchical Clustering Applied for Quality Estimation in Manufacturing System

Authors: Y. Q. Lv, C.K.M. Lee

Abstract:

This paper develops a quality estimation method with the application of fuzzy hierarchical clustering. Quality estimation is essential to quality control and quality improvement as a precise estimation can promote a right decision-making in order to help better quality control. Normally the quality of finished products in manufacturing system can be differentiated by quality standards. In the real life situation, the collected data may be vague which is not easy to be classified and they are usually represented in term of fuzzy number. To estimate the quality of product presented by fuzzy number is not easy. In this research, the trapezoidal fuzzy numbers are collected in manufacturing process and classify the collected data into different clusters so as to get the estimation. Since normal hierarchical clustering methods can only be applied for real numbers, fuzzy hierarchical clustering is selected to handle this problem based on quality standards.

Keywords: Quality Estimation, Fuzzy Quality Mean, Fuzzy Hierarchical Clustering, Fuzzy Number, Manufacturing system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
607 Applying Clustering of Hierarchical K-means-like Algorithm on Arabic Language

Authors: Sameh H. Ghwanmeh

Abstract:

In this study a clustering technique has been implemented which is K-Means like with hierarchical initial set (HKM). The goal of this study is to prove that clustering document sets do enhancement precision on information retrieval systems, since it was proved by Bellot & El-Beze on French language. A comparison is made between the traditional information retrieval system and the clustered one. Also the effect of increasing number of clusters on precision is studied. The indexing technique is Term Frequency * Inverse Document Frequency (TF * IDF). It has been found that the effect of Hierarchical K-Means Like clustering (HKM) with 3 clusters over 242 Arabic abstract documents from the Saudi Arabian National Computer Conference has significant results compared with traditional information retrieval system without clustering. Additionally it has been found that it is not necessary to increase the number of clusters to improve precision more.

Keywords: Hierarchical K-mean like clustering (HKM), Kmeans, cluster centroids, initial partition, and document distances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
606 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
605 Binary Classification Tree with Tuned Observation-based Clustering

Authors: Maythapolnun Athimethphat, Boontarika Lerteerawong

Abstract:

There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.

Keywords: multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
604 A Review on Enhanced Dynamic Clustering in WSN

Authors: M. Sangeetha, A. Sabari, K. Elakkiya

Abstract:

Recent advancement in wireless internetworking has presented a number of dynamic routing protocols based on sensor networks. At present, a number of revisions are made based on their energy efficiency, lifetime and mobility. However, to the best of our knowledge no extensive survey of this special type has been prepared. At present, review is needed in this area where cluster-based structures for dynamic wireless networks are to be discussed. In this paper, we examine and compare several aspects and characteristics of some extensively explored hierarchical dynamic clustering protocols in wireless sensor networks. This document also presents a discussion on the future research topics and the challenges of dynamic hierarchical clustering in wireless sensor networks.

Keywords: Dynamic cluster, Hierarchical clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
603 Minimal Spanning Tree based Fuzzy Clustering

Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi

Abstract:

Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.

Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
602 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: Share of electricity generation, CO2 emission, targets, multivariate methods, hierarchical clustering, K-means clustering, discriminant analyzed, correlation, EU member countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
601 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
600 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System

Authors: Saran Satsangi, Ashish Saini, Amit Saraswat

Abstract:

In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approach

Keywords: Voltage control areas, reactive power management, K-means clustering algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
599 Using Suffix Tree Document Representation in Hierarchical Agglomerative Clustering

Authors: Daniel I. Morariu, Radu G. Cretulescu, Lucian N. Vintan

Abstract:

In text categorization problem the most used method for documents representation is based on words frequency vectors called VSM (Vector Space Model). This representation is based only on words from documents and in this case loses any “word context" information found in the document. In this article we make a comparison between the classical method of document representation and a method called Suffix Tree Document Model (STDM) that is based on representing documents in the Suffix Tree format. For the STDM model we proposed a new approach for documents representation and a new formula for computing the similarity between two documents. Thus we propose to build the suffix tree only for any two documents at a time. This approach is faster, it has lower memory consumption and use entire document representation without using methods for disposing nodes. Also for this method is proposed a formula for computing the similarity between documents, which improves substantially the clustering quality. This representation method was validated using HAC - Hierarchical Agglomerative Clustering. In this context we experiment also the stemming influence in the document preprocessing step and highlight the difference between similarity or dissimilarity measures to find “closer" documents.

Keywords: Text Clustering, Suffix tree documentrepresentation, Hierarchical Agglomerative Clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
598 Generating Concept Trees from Dynamic Self-organizing Map

Authors: Norashikin Ahmad, Damminda Alahakoon

Abstract:

Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.

Keywords: dynamic self-organizing map, concept formation, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
597 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
596 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
595 Fuzzy Types Clustering for Microarray Data

Authors: Seo Young Kim, Tai Myong Choi

Abstract:

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.

Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
594 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
593 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon

Abstract:

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Keywords: Ant colony system, biological data, clustering, DNA chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
592 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks

Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari

Abstract:

A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.

Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
591 Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry

Authors: S. Soommat, S. Patamatamkul, T. Prempridi, M. Sritulyachot, P. Ineure, S. Yimman

Abstract:

Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.

Keywords: Slider process, Defective diagnosis and Data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
590 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
589 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks

Authors: Kavi K. Khedo, R. K. Subramanian

Abstract:

Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.

Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
588 Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm

Authors: Bainian Li, Kongsheng Zhang, Jian Xu

Abstract:

In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.

Keywords: FCM algorithm, Principal Components Analysis, Clustervalidity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
587 Grid-based Supervised Clustering - GBSC

Authors: Pornpimol Bungkomkhun, Surapong Auwatanamongkol

Abstract:

This paper presents a supervised clustering algorithm, namely Grid-Based Supervised Clustering (GBSC), which is able to identify clusters of any shapes and sizes without presuming any canonical form for data distribution. The GBSC needs no prespecified number of clusters, is insensitive to the order of the input data objects, and is capable of handling outliers. Built on the combination of grid-based clustering and density-based clustering, under the assistance of the downward closure property of density used in bottom-up subspace clustering, the GBSC can notably reduce its search space to avoid the memory confinement situation during its execution. On two-dimension synthetic datasets, the GBSC can identify clusters with different shapes and sizes correctly. The GBSC also outperforms other five supervised clustering algorithms when the experiments are performed on some UCI datasets.

Keywords: supervised clustering, grid-based clustering, subspace clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
586 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
585 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
584 A Comparison of Fuzzy Clustering Algorithms to Cluster Web Messages

Authors: Sara El Manar El Bouanani, Ismail Kassou

Abstract:

Our objective in this paper is to propose an approach capable of clustering web messages. The clustering is carried out by assigning, with a certain probability, texts written by the same web user to the same cluster based on Stylometric features and using fuzzy clustering algorithms. Focus in the present work is on comparing the most popular algorithms in fuzzy clustering theory namely, Fuzzy C-means, Possibilistic C-means and Fuzzy Possibilistic C-Means.

Keywords: Authorship detection, fuzzy clustering, profiling, stylometric features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
583 Analysis of Diverse Clustering Tools in Data Mining

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202