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Abstract—In this work, we begin with the presentation of the
Tθ family of usual similarity measures concerning multidimensional
binary data. Subsequently, some properties of these measures are
proposed. Finally the impact of the use of different inter-elements
measures on the results of the Agglomerative Hierarchical Clustering
Methods is studied.
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I. INTRODUCTION

THE similarity and the dissimilarity measures are
applications allowing to evaluate the resemblance

between each pair of elements of a finite set. These measures
have several application fields, such as, the information
retrieval, the knowledge discovery, etc. The majority of these
applications uses these measures for the data clustering which
consists in regrouping the similar elements and in separating
the different ones. Thus, the use of a resemblance measure
is necessary for the clustering and the choice of a measure
influences on the quality of the result. This paper presents,
in its first part, the Tθ family of usual similarity measures
concerning multidimensional binary data and suggests some
properties of these measures. In the second part of the paper,
the properties proposed are used to study the impact of
the change of the inter-element measure used by another
measure on the results of the Agglomerative Hierarchical
Clustering methods. Knowing that these methods require
two kinds of measures. The inter-element measures which
assess the similarity between each pair of elements of the
set to classify and the inter-class measures which assess the
similarity between each pair of classes.

Let N be an n-set. Every element x of N is described
by m characteristics. Each characteristic is either present or
absent for each element.

A similarity measure, denoted s, is an application from N×
N to R , the set of real numbers, satisfying the following
properties [1],[2]:

Positivity: ∀x, y ∈ N : s(x, y) ≥ 0
Maximality: ∀x, y ∈ N : s(x, x) = s(y, y) ≥ s(x, y)

Symmetry: ∀x, y ∈ N : s(x, y) = s(y, x)

A dissimilarity measure, denoted d, is an application from
N × N to R satisfying the following properties:
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Positivity: ∀x, y ∈ N : d(x, y) ≥ 0
Identity of indiscernibles ∀x, y ∈ N : d(x, y) = 0 ⇔ x = y

Symmetry: ∀x, y ∈ N : d(x, y) = d(y, x)

To transform a similarity measure s into a dissimilarity
measure d, it is sufficient to use the following formula:

∀x, y ∈ N : d(x, y) = smax − s(x, y) (1)

smax is the maximum similarity reached by the elements of
N × N .

II. Tθ FAMILY OF MEASURES

There exist several similarity measures for multidimensional
binary data. They are expressed in terms of four quantities
denoted a, b, c and d associated to each pair of elements
(x, y) from N × N . These quantities are defined as follows
[7],[10]:

• a is the number of characteristics presents for x and
presents for y,

• b is the number of characteristics present for x and absent
for y,

• c is the number of characteristics present for y and absent
for x,

• and d is the number of characteristics absent for x and
absent for y.

c is the number of characteristics present for y and absent
for x,

The sum a + b + c + d = m.

Based on these quantities, several similarity measures are
defined for multidimensional binary data. In 1986, Gower and
Legendre proposed to separate the usual measures into two
families [2]. The first family is denoted Sθ and the second is
denoted Tθ. They are defined as follows:

Sθ = a+d
a+d+θ(b+c) et Tθ = a

a+θ(b+c)

Where θ ∈ R+.

Table I includes the usual similarity measures of the family
Tθ [1], [5],[6].

III. EQUIVALENCE AND SEVERITY OF Tθ FAMILY OF
MEASURES

The use of a similarity measure on the set N aims to:
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TABLE I
USUAL SIMILARITY MEASURES OF THE FAMILY Tθ .

Measure Year Formula θ
Jaccard [5],[6] 1908 s1 = a

a+b+c
θ = 1

Dice [1],[5],[6] 1945 s6 = a
a+ 1

2 (b+c)
θ = 2−1

Sorensen [9] 1948 s7 = 4a
4a+b+c

θ = 2−2

Sokal and Sneath [1],[5] 1973 s9 = a
a+2(b+c)

θ = 2

Anderberg [5] 1973 s10 = 8a
8a+b+c

θ = 2−3

• measure the resemblance between each pair of elements
(x, y) form N × N .

• order the pairs of elements {x, y} of N × N based on
their similarity value.

Thus, to compare the usual similarity measures of Tθ family,
we based on the similarity values obtained (that we denote
the severity of measures) and on the orders of the pairs of
elements generated.

Comparing the usual measures of Tθ family, we prove:

Theorem 1
The usual similarity measures for multidimensional binary
data belonging to the family Tθ check:
∀(x, y) ∈ N × N : θ1 ≤ θ2 ⇔ Tθ1(x, y) ≥ Tθ2(x, y)

Proof:
Tθ1(x, y) =

a

a + θ1(b + c)

Tθ2(x, y) =
a

a + θ2(b + c)

Tθ1(x, y) − Tθ2(x, y) =
a

a + θ1(b + c)
− a

a + θ2(b + c)

=
a(θ2 − θ1)(b + c)

(a + θ1(b + c))(a + θ1(b + c))

Since a,b,c, θ1 and θ2 are positive then:

θ1 ≤ θ2 ⇔ Tθ1(x, y) ≥ Tθ2(x, y)

According to Batagelj and Bren [1], each resemblance
measure (similarity or dissimilarity) r can induce an order
relation denoted �r on N2 such as:

N2 = {{x, y} : x, y ∈ N}
{x, y} �r {u, v} ⇔ r(x, y) < r(u, v)

From these order relations an equivalence relation between
resemblance measures, denoted ∼=, is defined as follows:

r ∼= s ⇔ �r=�s

where r and s are two resemblance measures.

Furthermore, Batagelj and Bren [1] proved the theorem:

Theorem 2[1]
Let f : r(N × N) −→ R be a strictly increasing/decreasing
function and r a resemblance, Then:

s(x, y) = f(r(x, y)) for all (x, y) ∈ N × N

is also a resemblance and r ∼= s.
Conversely: let r, s be resemblances and r ∼= s. Then the
function f : r(X × X) −→ R defined by:

f(t) = s(x, y) for t = r(x, y)

is well-defined, strictly increasing/decreasing and
s(x, y) = f(r(x, y)).

Using this equivalence relation between resemblance and
the theorem (2) we prove:

Theorem 3[4]
The usual similarity measures for multidimensional binary
data belonging to the family Tθ check:
∀θ1, θ2 ∈ R : Tθ1

∼= Tθ2

IV. AGGLOMERATIVE HIERARCHICAL CLUSTERING
USING THE Tθ FAMILY OF MEASURES

Before presenting the Agglomerative Hierarchical
Clustering approach (AHC) , we recall two formal definitions
concerning the hierarchy. The first defines the Hierarchy:

Definition 1
Let H is a set of parts of N . H is a hierarchy if each pair of
subsets Ci and Cj of H are either disjoint or one is included
in the other:

∀Ci, Cj ∈ H : Ci ∩ Cj �= ∅ ⇒ (Ci ⊂ Cj) ∨ (Cj ⊂ Ci)

The second definition sets out the Indexed Hierarchy:

Definition 2[6]
An indexed hierarchy of a set N is a hierarchy of parts,
denoted by HN associated with an index scale that satisfies
the following property:

∀h, h′ ∈ HN ,∃v(h) ≥ 0,∃v(h′) ≥ 0 : h ⊂ h′ ⇒ v(h) < v(h′)

The Agglomerative Hierarchical Clustering of N allows the
construction of a hierarchy of classes from the n elements of
N . The generic algorithm of this approach is:
Initially, each element of N is a class by itself;

1) For each pair {x, y} of elements of N (initial classes),
Calculate the distance index (dissimilarity) d(x, y) and
store the results in a distance (dissimilarity) symmetric
matrix;

2) Define a new class by the union of the two most similar
classes;

3) Recalculate the distances (dissimilarities) between the
new class and all other classes;

4) Repeat steps 2 and 3 until a root class is obtained
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The first similarity matrix is obtained using an
inter-elements dissimilarity measure. At each iteration,
this matrix is updated using an inter-clusters dissimilarity
measure. The inter-clusters dissimilarity measures have to
satisfy the generalization property formulated as follows:

Definition 3
An inter-clusters dissimilarity measure denoted RC satisfies
the generalization property versus an inter-elements
dissimilarity measure denoted R if and only if:

∀x, y ∈ N : RC({x}, {y}) = R(x, y)

To use each usual similarity measure previously presented
for clustering multidimensional binary data using AHC
approach, we have to transform it into a dissimilarity measure
using the formula (1).

The difference between the Agglomerative Hierarchical
Clustering methods is the inter-clusters measure used. The
usual methods are:

1) The Single Link Method proposed by Jardine and Sibson
in 1971 [3]: The dissimilarity between two classes
Ci and Cj corresponds to the smallest inter-elements
dissimilarity between the elements of Ci and the
elements of Cj

Dmin(Ci, Cj) = min(x∈Ci,y∈Cj)d(x, y)

2) The Complete Link Method proposed by Sorensen in
1948 [9]: The dissimilarity between the two classes
Ci and Cj corresponds to the longest inter-elements
dissimilarity between the elements of Ci and the element
of Cj .

Dmax(Ci, Cj) = max(x∈Ci,y∈Cj)d(x, y)

3) The Ward method is proposed by Ward in 1963 [11]:
each class is represented by their gravity center and has a
weight (for example: number of elements). The distance
between two classes Ci and Cj is given by:

Dwar(Ci, Cj) =
p(Ci).p(Cj)

p(Ci) + p(Cj)
.d(g(Ci).g(Cj))2

Where p(Ci) and g(Ci) are, respectively, the weight
and the gravity center of Ci.

4) The Average Link method proposed by Sokal and
Michener in 1958 [8]: The dissimilarity between two
classes Ci and Cj corresponds to the average of all
inter-elements dissimilarities between the elements of Ci

and the elements of Cj . It is given by:

Dave(Ci, Cj) =

∑
x∈Ci,y∈Cj

d(x, y)

ni × nj

where ni and nj are the number of elements of Ci and
Cj respectively.

Using the theorems (1) and (3), we prove:

Theorem 4
The dissimilarity measures generated from the similarity
measures of the family Tθ(using the formula (1)) give the
same hierarchy of clusters by applying the Single Link method.

Theorem 5
The dissimilarity measures generated from the similarity
measures of the family Tθ(using the formula (1)) give the
same hierarchy of clusters by applying the Complete Link
method.

Proof:
To prove theorems 4 and 5, we first prove that:
Two equivalent similarity measures Tθ1 and Tθ2 induce two
equivalent dissimilarity measures Dθ1 and Dθ2 .

In the second step we prove that:
By using two equivalent inter-element measures Dθ1 and Dθ2 ,
at each iteration of the Single link method and at each iteration
of the complete link method, the same cluster is created and
the order of pairs of clusters {Ci,Cj} according to their
dissimilarities remains the same in the two cases (using Dθ1

or Dθ2 .

Let Dθ1 and Dθ2 the dissimilarity measures induced from
the two similarity measures Tθ1 and Tθ2.

Theorem 6
If the single link method by using Dθ1 gives as a result the
indexed hierarchy H1 and by using Dθ2 gives the indexed
hierarchy H2, then H1 and H2 correspond to the same
hierarchy H and check:

∀h ∈ H : θ1 ≤ θ2 ⇔ v1(h) ≤ v2(h)

Where v1(h) is the index of h in H1 and v2(h) the index of
h in H2.

Proof:
By the theorem (4), the Single Link Method gives the same
hierarchy, denoted H, using the dissimilarity measure Dθ1 or
the dissimilarity measure Dθ2 .

We prove that any class h of H is the union of the same
pair of classes h′ and h′′ using Dθ1 or Dθ2 .

Let vθ1 be the application inducing the indexed hierarchy
Hθ1 from H using the measure Dθ1 , thus:

vθ1(h) = min
x∈h′,y∈h′′

(Dθ1(x, y))

and Let vθ2 be the application inducing the indexed
hierarchy Hθ2 from H using the measure Dθ2 , thus:

vθ2(h) = min
x∈h′,y∈h′′

(Dθ2(x, y))

By the theorem 2:

∀(x, y) ∈ N × N : θ1 ≤ θ2 ⇔ Tθ1(x, y) ≥ Tθ2(x, y)
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So:

∀(x, y) ∈ N × N : θ1 ≤ θ2 ⇔ Dθ1(x, y) ≤ Dθ2(x, y)

Thus:
∀(x, y) ∈ N × N :

θ1 ≤ θ2 ⇔ min
x∈h′,y∈h′′

(Dθ1(x, y)) ≤ min
x∈h′,y∈h′′

(Dθ2(x, y))

Consequently:

∀h ∈ H : θ1 ≤ θ2 ⇔ vθ1(h) ≤ vθ2(h)

Theorem 7
If the Complete link method by using Dθ1 gives as a result
the indexed hierarchy H1 and by using Dθ2 gives the indexed
hierarchy H2, then H1 and H2 correspond to the same
hierarchy H and check:

∀h ∈ H : θ1 ≤ θ2 ⇔ v1(h) ≤ v2(h)

Where v1(h) is the index of h in H1 and v2(h) the index of
h in H2.

The proof is the same given for the theorem 6. We just
change the minimum by the maximum.

V. CONCLUSION

This paper presents some results facilitating the choice of
the inter-element similarity measure within the Agglomerative
Hierarchical Clustering of multidimensional binary data.
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