Search results for: Discrete logarithm problem.
3984 Cryptography Over Elliptic Curve Of The Ring Fq[e], e4 = 0
Authors: Chillali Abdelhakim
Abstract:
Groups where the discrete logarithm problem (DLP) is believed to be intractable have proved to be inestimable building blocks for cryptographic applications. They are at the heart of numerous protocols such as key agreements, public-key cryptosystems, digital signatures, identification schemes, publicly verifiable secret sharings, hash functions and bit commitments. The search for new groups with intractable DLP is therefore of great importance.The goal of this article is to study elliptic curves over the ring Fq[], with Fq a finite field of order q and with the relation n = 0, n ≥ 3. The motivation for this work came from the observation that several practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic Curve Cryptosystems . In a first time, we describe these curves defined over a ring. Then, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. In anther article we study their cryptographic properties, an attack of the elliptic discrete logarithm problem, a new cryptosystem over these curves.
Keywords: Elliptic Curve Over Ring, Discrete Logarithm Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35833983 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field
Authors: Tun Myat Aung, Ni Ni Hla
Abstract:
This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.cKeywords: Discrete logarithm problem, general attacks, elliptic curves, strong curves, prime field, binary field, attack experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11783982 Secure Proxy Signature Based on Factoring and Discrete Logarithm
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.
Keywords: Discrete logarithm, factoring, proxy signature, key agreement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12103981 A New Design Partially Blind Signature Scheme Based on Two Hard Mathematical Problems
Authors: Nedal Tahat
Abstract:
Recently, many existing partially blind signature scheme based on a single hard problem such as factoring, discrete logarithm, residuosity or elliptic curve discrete logarithm problems. However sooner or later these systems will become broken and vulnerable, if the factoring or discrete logarithms problems are cracked. This paper proposes a secured partially blind signature scheme based on factoring (FAC) problem and elliptic curve discrete logarithms (ECDL) problem. As the proposed scheme is focused on factoring and ECDLP hard problems, it has a solid structure and will totally leave the intruder bemused because it is very unlikely to solve the two hard problems simultaneously. In order to assess the security level of the proposed scheme a performance analysis has been conducted. Results have proved that the proposed scheme effectively deals with the partial blindness, randomization, unlinkability and unforgeability properties. Apart from this we have also investigated the computation cost of the proposed scheme. The new proposed scheme is robust and it is difficult for the malevolent attacks to break our scheme.
Keywords: Cryptography, Partially Blind Signature, Factoring, Elliptic Curve Discrete Logarithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17703980 A Computer Proven Application of the Discrete Logarithm Problem
Authors: Sebastian Kusch, Markus Kaiser
Abstract:
In this paper we analyze the application of a formal proof system to the discrete logarithm problem used in publickey cryptography. That means, we explore a computer verification of the ElGamal encryption scheme with the formal proof system Isabelle/HOL. More precisely, the functional correctness of this algorithm is formally verified with computer support. Besides, we present a formalization of the DSA signature scheme in the Isabelle/HOL system. We show that this scheme is correct what is a necessary condition for the usefulness of any cryptographic signature scheme.
Keywords: Formal proof system, higher-order logic, formal verification, cryptographic signature scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15603979 Public Key Cryptosystem based on Number Theoretic Transforms
Authors: C. Porkodi, R. Arumuganathan
Abstract:
In this paper a Public Key Cryptosystem is proposed using the number theoretic transforms (NTT) over a ring of integer modulo a composite number. The key agreement is similar to ElGamal public key algorithm. The security of the system is based on solution of multivariate linear congruence equations and discrete logarithm problem. In the proposed cryptosystem only fixed numbers of multiplications are carried out (constant complexity) and hence the encryption and decryption can be done easily. At the same time, it is very difficult to attack the cryptosystem, since the cipher text is a sequence of integers which are interrelated. The system provides authentication also. Using Mathematica version 5.0 the proposed algorithm is justified with a numerical example.Keywords: Cryptography, decryption, discrete logarithm problem encryption, Integer Factorization problem, Key agreement, Number Theoretic Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16803978 An Efficient Proxy Signature Scheme Over a Secure Communications Network
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Proxy signature scheme permits an original signer to delegate his/her signing capability to a proxy signer, and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on the discrete logarithm problem.Keywords: Proxy signature, warrant partial delegation, key agreement, discrete logarithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12593977 A New Implementation of Miura-Arita Algorithm for Miura Curves
Authors: A. Basiri, S. Rahmany, D. Khatibi
Abstract:
The aim of this paper is to review some of standard fact on Miura curves. We give some easy theorem in number theory to define Miura curves, then we present a new implementation of Arita algorithm for Miura curves.
Keywords: Miura curve, discrete logarithm problem, algebraic curve cryptography, Jacobian group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14633976 A New Floating Point Implementation of Base 2 Logarithm
Authors: Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T Sayed
Abstract:
Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving insights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.
Keywords: Logarithms, log2, floor, iterative, CORDIC, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38223975 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks
Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni
Abstract:
Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.Keywords: Abstract chemical reaction network, DNA strand displacement, natural logarithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10273974 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem
Authors: Benshi Zhu
Abstract:
In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12453973 Cryptography over Sextic Extension with Cubic Subfield
Authors: A. Chillali, M. Sahmoudi
Abstract:
In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.
Keywords: Integral bases, Cryptography, Discrete logarithm problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22413972 Transmission Lines Loading Enhancement Using ADPSO Approach
Authors: M. Mahdavi, H. Monsef, A. Bagheri
Abstract:
Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.Keywords: ADPSO, TEP problem, Lines loading optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193971 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldah, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.
Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6103970 Discrete Time Optimal Solution for the Connection Admission Control Problem
Authors: C. Bruni, F. Delli Priscoli, G. Koch, I. Marchetti
Abstract:
The Connection Admission Control (CAC) problem is formulated in this paper as a discrete time optimal control problem. The control variables account for the acceptance/ rejection of new connections and forced dropping of in-progress connections. These variables are constrained to meet suitable conditions which account for the QoS requirements (Link Availability, Blocking Probability, Dropping Probability). The performance index evaluates the total throughput. At each discrete time, the problem is solved as an integer-valued linear programming one. The proposed procedure was successfully tested against suitably simulated data.
Keywords: Connection Admission Control, Optimal Control, Integer valued Linear Programming, Quality of Service Requirements, Robust Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12623969 Solving 94-bit ECDLP with 70 Computers in Parallel
Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai
Abstract:
Elliptic curve discrete logarithm problem(ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard’s rho method to evaluate the security of ECDLP on Barreto-Naehrig(BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.Keywords: Pollard’s rho method, BN curve, Montgomery multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18713968 Optimization Using Simulation of the Vehicle Routing Problem
Authors: Nayera E. El-Gharably, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the problem are stochastic in nature; yet, limited work relevant to the application of discrete event system simulation has addressed the problem. Presented here is optimization using simulation of VRP; where, a simplified problem has been developed in the ExtendSimTM simulation environment; where, ExtendSimTM evolutionary optimizer is used to minimize the total transportation cost of the problem. Results obtained from the model are very satisfactory. Further complexities of the problem are proposed for consideration in the future.Keywords: Discrete event system simulation, optimization using simulation, vehicle routing problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58473967 Discrete Element Modeling on Bearing Capacity Problems
Authors: N. Li, Y. M. Cheng
Abstract:
In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.
Keywords: Bearing capacity, distinct element method, failure mechanism, large displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14903966 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity
Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail
Abstract:
In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.
Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47273965 Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem
Authors: Ruskartina Eki, Vincent F. Yu, Santosa Budi, A. A. N. Perwira Redi
Abstract:
This paper introduces symbiotic organism search (SOS) for solving capacitated vehicle routing problem (CVRP). SOS is a new approach in metaheuristics fields and never been used to solve discrete problems. A sophisticated decoding method to deal with a discrete problem setting in CVRP is applied using the basic symbiotic organism search (SOS) framework. The performance of the algorithm was evaluated on a set of benchmark instances and compared results with best known solution. The computational results show that the proposed algorithm can produce good solution as a preliminary testing. These results indicated that the proposed SOS can be applied as an alternative to solve the capacitated vehicle routing problem.Keywords: Symbiotic organism search, vehicle routing problem, metaheuristics, Solution Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30373964 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach
Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam
Abstract:
Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17743963 A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression
Authors: Kamrul Hasan Talukder, Koichi Harada
Abstract:
The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.
Keywords: Computation Tree Logic, Discrete WaveletTransform, Formal Verification, Image Compression, Symbolic Model Verifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17493962 A Survey of Discrete Facility Location Problems
Authors: Z. Ulukan, E. Demircioğlu
Abstract:
Facility location is a complex real-world problem which needs a strategic management decision. This paper provides a general review on studies, efforts and developments in Facility Location Problems which are classical optimization problems having a wide-spread applications in various areas such as transportation, distribution, production, supply chain decisions and telecommunication. Our goal is not to review all variants of different studies in FLPs or to describe very detailed computational techniques and solution approaches, but rather to provide a broad overview of major location problems that have been studied, indicating how they are formulated and what are proposed by researchers to tackle the problem. A brief, elucidative table based on a grouping according to “General Problem Type” and “Methods Proposed” used in the studies is also presented at the end of the work.Keywords: Discrete location problems, exact methods, heuristic algorithms, single source capacitated facility location problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38753961 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders
Authors: Alberto Hananel
Abstract:
The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15853960 Improved Robust Stability Criteria for Discrete-time Neural Networks
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14773959 Improved Robust Stability and Stabilization Conditions of Discrete-time Delayed System
Authors: Zixin Liu
Abstract:
The problem of robust stability and robust stabilization for a class of discrete-time uncertain systems with time delay is investigated. Based on Tchebychev inequality, by constructing a new augmented Lyapunov function, some improved sufficient conditions ensuring exponential stability and stabilization are established. These conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Compared with some previous results derived in the literature, the new obtained criteria have less conservatism. Two numerical examples are provided to demonstrate the improvement and effectiveness of the proposed method.
Keywords: Robust stabilization, robust stability, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15313958 Explicit Solution of an Investment Plan for a DC Pension Scheme with Voluntary Contributions and Return Clause under Logarithm Utility
Authors: Promise A. Azor, Avievie Igodo, Esabai M. Ase
Abstract:
The paper merged the return of premium clause and voluntary contributions to investigate retirees’ investment plan in a defined contributory (DC) pension scheme with a portfolio comprising of a risk-free asset and a risky asset whose price process is described by geometric Brownian motion (GBM). The paper considers additional voluntary contributions paid by members, charge on balance by pension fund administrators and the mortality risk of members of the scheme during the accumulation period by introducing return of premium clause. To achieve this, the Weilbull mortality force function is used to establish the mortality rate of members during accumulation phase. Furthermore, an optimization problem from the Hamilton Jacobi Bellman (HJB) equation is obtained using dynamic programming approach. Also, the Legendre transformation method is used to transform the HJB equation which is a nonlinear partial differential equation to a linear partial differential equation and solves the resultant equation for the value function and the optimal distribution plan under logarithm utility function. Finally, numerical simulations of the impact of some important parameters on the optimal distribution plan were obtained and it was observed that the optimal distribution plan is inversely proportional to the initial fund size, predetermined interest rate, additional voluntary contributions, charge on balance and instantaneous volatility.
Keywords: Legendre transform, logarithm utility, optimal distribution plan, return clause of premium, charge on balance, Weibull mortality function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083957 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error
Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab
Abstract:
This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10663956 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.
Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24573955 Partial Derivatives and Optimization Problem on Time Scales
Authors: Francisco Miranda
Abstract:
The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725