Search results for: Couple stress fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1923

Search results for: Couple stress fluid

1713 Differences in Stress and Total Deformation Due to Muscle Attachment to the Femur

Authors: Jeong-Woo Seo, Jin-Seung Choi, Dong-Won Kang, Jae-Hyuk Bae, Gye-Rae Tack

Abstract:

To achieve accurate and precise results of finite element analysis (FEA) of bones, it is important to represent the load/boundary conditions as identical as possible to the human body such as the bone properties, the type and force of the muscles, the contact force of the joints, and the location of the muscle attachment. In this study, the difference in the Von-Mises stress and the total deformation was compared by classifying them into Case 1, which shows the actual anatomical form of the muscle attached to the femur when the same muscle force was applied, and Case 2, which gives a simplified representation of the attached location. An inverse dynamical musculoskeletal model was simulated using data from an actual walking experiment to complement the accuracy of the muscular force, the input value of FEA. The FEA method using the results of the muscular force that were calculated through the simulation showed that the maximum Von-Mises stress and the maximum total deformation in Case 2 were underestimated by 8.42% and 6.29%, respectively, compared to Case 1. The torsion energy and bending moment at each location of the femur occurred via the stress ingredient. Due to the geometrical/morphological feature of the femur of having a long bone shape when the stress distribution is wide, as shown in Case 1, a greater Von-Mises stress and total deformation are expected from the sum of the stress ingredients. More accurate results can be achieved only when the muscular strength and the attachment location in the FEA of the bones and the attachment form are the same as those in the actual anatomical condition under the various moving conditions of the human body.

Keywords: Musculoskeletal modeling, Finite element analysis, Von-Mises stress, Deformation, Muscle attachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
1712 Family Relationships and Coping with the Stress of Young People from Migrant Families with Cerebral Palsy

Authors: A. Gagat-Matuła

Abstract:

The aim of this article is to present a relation between family relationships and styles of approach to coping with stress among young people from migrant families with cerebral palsy. The study involved 70 persons (with cerebral palsy in the standard intellectual capacity) from families, in which at least one of parents is a migrant. To measure the level of communication in the family, the Family Relationships Questionnaire (FRQ) was employed, while the styles of coping with stress was investigated with the CISS Questionnaire. The relation between family relationships and styles of coping with stressful situations of the respondents was investigated. It was shown that there is an affiliation between the emotion-oriented style of coping with the stress and the variable of “communication in my family”. Moreover, it was demonstrated that there is a linkage between the task-oriented style of coping with the stress and the variable of “maternal control in mother-child relationship”. Young people with CP subjected to overprotection and control from their mothers in problem situations tend to focus on their own emotions instead of trying to undertake constructive actions. Excessive control in daily life by mothers results in passivity and a lack of motivation to cope with difficult situations.

Keywords: Young people with cerebral palsy, family relationships, styles of coping with stress, migration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
1711 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
1710 New Insight into Fluid Mechanics of Lorenz Equations

Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao

Abstract:

New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.

Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1709 Improvement of Semen Quality in Holstein Bulls during Heat Stress by Supplementing Omega-3 Fatty Acids

Authors: Hamid. Gholami, Mohammad. Chamani, Armin. Towhidi, Mohammad. H. Fazeli

Abstract:

The aim of current study was to investigate the changes in the quality parameters of Holstein bull semen during the heat stress and the effect of feeding a source of omega-3 fatty acids in this period. Samples were obtained from 19 Holstein bulls during the expected time of heat stress in Iran (June to September 2009). Control group (n=10) were fed a standard concentrate feed while treatment group (n=9) had this feed top dressed with 100 g of an omega-3 enriched nutriceutical. Semen quality was assessed on ejaculates collected after 1, 5, 9 and 12 weeks of supplementation. Computer-assisted assessment of sperm motility, viability (eosinnigrosin) and hypo-osmotic swelling test (HOST) were conducted. Heat stress affected sperm quality parameters by week 5 and 9 (p<0.05). Supplementation has significantly increased total motility, progressive motility, HOST and average path velocity in the fresh semen of bulls (P<0.05).

Keywords: Bull, heat stress, omega-3 fatty acids, spermatozoa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1708 Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405

Authors: Kh.Farhangdoust, H.Kamankesh

Abstract:

Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.

Keywords: Chassis, cross member, residual stress, resistancespot weld.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1707 Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.

Keywords: Nanomaterials, finite element method, sizedependency, surface stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
1706 Effect of Drought Stress on Nitrogen Components in Corn

Authors: Masoud Rafiee, Fatemeh Abdipoor, Hosain Lari

Abstract:

An attempt was made to study of nitrogen components response of corn (Zea mays L.) to drought stress. A farm research was done in RCBD as split-plot with four replications in Khorramabad, west Iran. Drought stress levels as irrigation regimes after 75 (control), 100, and 120 (stress) mm cumulative evaporation were in main plots, and four seed corn varieties include 500 (medium maturity), 647, 700, and 704 (long maturity) were as subplots. Soluble protein, nitrate and proline amino acid were measured in shoot and root at flowering stage, and grain yield was measured in harvesting stage. As the drought progressed, the amount of nitrate and proline followed an increasing trend, but soluble protein decreased in shoot and root. The highest amount of nitrate and proline was observed in longer maturity varieties than shorter ones, but decrease yield of long maturity varieties was higher than medium maturity varieties in drought condition, because of long duration of stress.

Keywords: Nitrate, Proline, Soluble protein, Yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
1705 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid

Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari

Abstract:

Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.

Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1704 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages

Authors: M. T. K. Aghamolki, M. K. Yusop, F. C. Oad, H. Zakikhani, Hawa. Ze Jaafar, S. Kharidah S.M., M. M. Hanafi

Abstract:

The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashemi due to its tall character. The total tillers per hill were significantly higher in Fajr. In all growing conditions, Hashemi recorded higher panicle exertion. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield decreased when heat stress was imposed during booting and flowering. However, plants had no effect on heat stress during ripening stage.

Keywords: Rice, growth, heat, stress, morphology, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3305
1703 Analytical and Experimental Methods of Design for Supersonic Two-Stage Ejectors

Authors: S. Daneshmand, C. Aghanajafi, A. Bahrami

Abstract:

In this paper the supersonic ejectors are experimentally and analytically studied. Ejector is a device that uses the energy of a fluid to move another fluid. This device works like a vacuum pump without usage of piston, rotor or any other moving component. An ejector contains an active nozzle, a passive nozzle, a mixing chamber and a diffuser. Since the fluid viscosity is large, and the flow is turbulent and three dimensional in the mixing chamber, the numerical methods consume long time and high cost to analyze the flow in ejectors. Therefore this paper presents a simple analytical method that is based on the precise governing equations in fluid mechanics. According to achieved analytical relations, a computer code has been prepared to analyze the flow in different components of the ejector. An experiment has been performed in supersonic regime 1.5Keywords: Ejector, Wind Tunnel, Supersonic, Diffuser, Machnumber, Mixing Chamber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3173
1702 Effect of Out-of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: Stress concentration, patch, out-of-plane deformation, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
1701 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and resistance to annealing softening. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: DC plating, internal stress, leveling power, Ni-Mn coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1700 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: Unsaturated soils, silty sand, clayey sand, triaxial test, constant water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1699 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
1698 Numerical Study of Vortex Formation inside a Stirred Tank

Authors: Divya Rajavathsavai, Akhilesh Khapre, Basudeb Munshi

Abstract:

The computational fluid dynamics (CFD) study of stirred tank with the air-water interface are carried out in the presence of different types of the impeller and with or without baffles. A multiple reference frame (MRF) approach with the volume of fluid (VOF) method is used to capture the air-water interface. The RANS (Reynolds Averaged Navier-Stokes) equations with k-ε turbulence model are solved to predict the flow behavior of water and air phase which are treated as a different phases. The predicted results have shown that the VOF method is able to capture the interface in the unbaffled tank. While, the VOF method is showing an unfeasible results in the baffled tank with high rotational impeller speed. For continuous stirred tank, the air-water interface is disturbed by the inflow and the level of water is also increased with time.

Keywords: Computational Fluid Dynamics, stirred tank, airwater interface, multiple reference frame, volume of fluid, Reynolds Averaged Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318
1697 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: Numerical simulation, CFD, k-ω (SST), cold room, dates, cooling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
1696 Numerical Simulation of Thermoreversible Polymer Gel Filtration

Authors: Said F. Urmancheev, Victor N. Kireev, Svetlana F. Khizbullina

Abstract:

This paper presents results of numerical simulation of filtration of abnormal thermoviscous fluid on an example of thermo reversible polymer gel.

Keywords: Abnormal thermoviscous fluid, filtration, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
1695 Group Invariant Solutions for Radial Jet Having Finite Fluid Velocity at Orifice

Authors: I. Naeem, R. Naz

Abstract:

The group invariant solution for Prandtl-s boundary layer equations for an incompressible fluid governing the flow in radial free, wall and liquid jets having finite fluid velocity at the orifice are investigated. For each jet a symmetry is associated with the conserved vector that was used to derive the conserved quantity for the jet elsewhere. This symmetry is then used to construct the group invariant solution for the third-order partial differential equation for the stream function. The general form of the group invariant solution for radial jet flows is derived. The general form of group invariant solution and the general form of the similarity solution which was obtained elsewhere are the same.

Keywords: Two-dimensional jets, radial jets, group invariant solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
1694 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
1693 The Effect of Silicon on Cadmium Stress in Echium amoenum

Authors: Janet Amiri, Shekoofeh Entesari, Kourosh Delavar, Mahshid Saadatmand, Nasrin Aghamohammad Rafie

Abstract:

The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.

Keywords: Silicon, Cadmium, Echium, MDA, antocyanin, flavonoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1692 Contact Stress on the Surface of Gear Teeth with Different Profile

Authors: K. Farhangdoost, H. Heirani

Abstract:

Contact stress is an important problem in industry. This is a problem that in the first attention may be don-t appears, but disregard of these stresses cause a lot of damages in machines. These stresses occur at locations such as gear teeth, bearings, cams and between a locomotive wheel and the railroad rail. These stresses cause failure by excessive elastic deformation, yielding and fracture. In this paper we intend show the effective parameters in contact stress and ponder effect of curvature. In this paper we study contact stresses on the surface of gear teeth and compare these stresses for four popular profiles of gear teeth (involute, cycloid, epicycloids, and hypocycloid). We study this problem with mathematical and finite element methods and compare these two methods on different profile surfaces.

Keywords: Contact stress, Cycloid, Epicycloids, Finite element, Gear, Hypocycloid, Involute, Radius of curvature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1691 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating

Abstract:

A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: Jackeline Kafie-Martinez, Peter B. Keating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
1690 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1689 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud

Abstract:

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067
1688 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates

Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib

Abstract:

The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating  that the flow equations possess an infinite set of solutions. 

Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411
1687 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108
1686 Failure Analysis of Methanol Evaporator

Authors: D. Sufi Ahmadi, B. Bagheri

Abstract:

Thermal water hammer is a special type of water hammer which rarely occurs in heat exchangers. In biphasic fluids, if steam bubbles are surrounded by condensate, regarding lower condensate temperature than steam, they will suddenly collapse. As a result, the vacuum caused by an extreme change in volume lead to movement of the condensates in all directions and their collision the force produced by this collision leads to a severe stress in the pipe wall. This phenomenon is a special type of water hammer. According to fluid mechanics, this phenomenon is a particular type of transient flows during which abrupt change of fluid leads to sudden pressure change inside the tube. In this paper, the mechanism of abrupt failure of 80 tubes of 481 tubes of a methanol heat exchanger is discussed. Initially, due to excessive temperature differences between heat transfer fluids and simultaneous failure of 80 tubes, thermal shock was presupposed as the reason of failure. Deeper investigation on cross-section of failed tubes showed that failure was, ductile type of failure, so the first hypothesis was rejected. Further analysis and more accurate experiments revealed that failure of tubes caused by thermal water hammer. Finally, the causes of thermal water hammer and various solutions to avoid such mechanism are discussed.

Keywords: Thermal water hammer, Brittle Failure, Condensate thermal shock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
1685 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface

Authors: A. Mahdy, Sameh E. Ahmed

Abstract:

Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.

Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
1684 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad

Abstract:

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857