Search results for: Artificial Neural Network Architectures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3562

Search results for: Artificial Neural Network Architectures

3382 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
3381 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
3380 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3501
3379 A Cognitive Model for Frequency Signal Classification

Authors: Rui Antunes, Fernando V. Coito

Abstract:

This article presents the development of a neural network cognitive model for the classification and detection of different frequency signals. The basic structure of the implemented neural network was inspired on the perception process that humans generally make in order to visually distinguish between high and low frequency signals. It is based on the dynamic neural network concept, with delays. A special two-layer feedforward neural net structure was successfully implemented, trained and validated, to achieve minimum target error. Training confirmed that this neural net structure descents and converges to a human perception classification solution, even when far away from the target.

Keywords: Neural Networks, Signal Classification, Adaptative Filters, Cognitive Neuroscience

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3378 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
3377 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3376 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
3375 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
3374 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3373 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
3372 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5595
3371 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System

Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja

Abstract:

The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.

Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
3370 Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Authors: Nahid Ghasemi, Mohammad Goodarzi, Morteza Khosravi

Abstract:

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

Keywords: Phenol, Resorcinol, Catechol, Principal componentrankingArtificial Neural Network, Chemometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
3369 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
3368 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
3367 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3366 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks

Authors: K. Kamalanand, S. Srinivasan

Abstract:

Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.

Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
3365 Neural Network Controller for Mobile Robot Motion Control

Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic

Abstract:

In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.

Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
3364 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
3363 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
3362 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
3361 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
3360 Neural Network Based Predictive DTC Algorithm for Induction Motors

Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad

Abstract:

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Keywords: Neural Networks, Predictive DTC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
3359 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
3358 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
3357 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water

Authors: S. Areerachakul

Abstract:

Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.

Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
3356 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
3355 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
3354 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis

Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar

Abstract:

In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.

Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
3353 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)

Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat

Abstract:

An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.

Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464