Search results for: Electric distribution system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10016

Search results for: Electric distribution system

10016 A Dynamic Programming Model for Maintenance of Electric Distribution System

Authors: Juha Korpijärvi, Jari Kortelainen

Abstract:

The paper presents dynamic programming based model as a planning tool for the maintenance of electric power systems. Every distribution component has an exponential age depending reliability function to model the fault risk. In the moment of time when the fault costs exceed the investment costs of the new component the reinvestment of the component should be made. However, in some cases the overhauling of the old component may be more economical than the reinvestment. The comparison between overhauling and reinvestment is made by optimisation process. The goal of the optimisation process is to find the cost minimising maintenance program for electric power distribution system.

Keywords: Dynamic programming, Electric distribution system, Maintenance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
10015 Thermal Analysis of a Sliding Electric Contact System Using Finite Element Method

Authors: Adrian T. Pleșca

Abstract:

In this paper a three dimensional thermal model of a sliding contact system is proposed for both steady-state or transient conditions. The influence of contact force, electric current and ambient temperature on the temperature distribution, has been investigated. A thermal analysis of the different type of the graphite material of fixed electric contact and its influence on contact system temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Sliding electric contact, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
10014 Space Charge Distribution in 22 kV XLPE Insulated Cable by Using Pulse Electroacoustic Measurement Technique

Authors: N. Ruangkajonmathee, R. Thiamsri, B. Marungsri

Abstract:

This paper presents the experimental results on space charge distribution in cross-linked polyethylene (XLPE) insulating material for 22 kV power distribution system cable by using pulse electroacoustic measurement technique (PEA). Numbers of XLPE insulating material ribbon having thickness 60 μm taken from unused 22 kV high voltage cable were used as specimen in this study. DC electric field stress was applied to test specimen at room temperature (25°C). Four levels of electric field stress, 25 kV/mm, 50 kV/mm, 75 kV/mm and 100 kV/mm, were used. In order to investigate space charge distribution characteristic, space charge distribution characteristics were measured after applying electric field stress 15 min, 30 min and 60 min, respectively. The results show that applied time and magnitude of dc electric field stress play an important role to the formation of space charge.

Keywords: Space charge distribution, pulsed electroacoustic(PEA) technique, cross-linked polyethylene (XLPE), DC electrical fields stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
10013 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: Electric field, energy transmission line, finite element method, pylon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
10012 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: Copper plates, Electric field distribution, Dielectric heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
10011 Techniques for Reliability Evaluation in Distribution System Planning

Authors: T. Lantharthong, N. Phanthuna

Abstract:

This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.

Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4512
10010 Concept of Automation in Management of Electric Power Systems

Authors: Richard Joseph, Nerey Mvungi

Abstract:

An electric power system includes a generating, a transmission, a distribution, and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.

Keywords: Automation, Distribution subsystem, Generating subsystem, PSS/E, TANESCO, Transmission subsystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
10009 Optimal Allocation of PHEV Parking Lots to Minimize Distribution System Losses

Authors: Mahmud Fotuhi-Firuzabad, Ali Abbaspour, Mohsen Mazidi, Mohamamd Rastegar

Abstract:

To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.

Keywords: Plug-in Hybrid Electric Vehicle (PHEV), PHEV parking lot, V2G.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
10008 An Intelligent Approach for Management of Hybrid DG System

Authors: Ali Vaseghi Ardekani, Hamid Reza Forutan, Amir Habibi, Ali Reza Rajabi, Hasan Adloo

Abstract:

Distributed generation units (DGs) are grid-connected or stand-alone electric generation units located within the electric distribution system at or near the end user. It is generally accepted that centralized electric power plants will remain the major source of the electric power supply for the near future. DGs, however, can complement central power by providing incremental capacity to the utility grid or to an end user. This paper presents an efficient power dispatching model for hybrid wind-Solar power generation system, to satisfy some essential requirements, such as dispersed electric power demand, electric power quality and reducing generation cost and so on. In this paper, presented some elements of the main parts in the hybrid system; and then made fundamental dispatching strategies according to different situations; then pointed out four improving measures to improve genetic algorithm, such as: modify the producing way of selection probability, improve the way of crossover, protect excellent chromosomes, and change mutation range and so on. Finally, propose a technique for solving the unit's commitment for dispatching problem based on an improved genetic algorithm.

Keywords: Power Quality, Wind-Solar System, Genetic Algorithm, Hybrid System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
10007 Design of AC Electronics Load Surge Protection

Authors: N. Mungkung, S. Wongcharoen, C. Sukkongwari, Somchai Arunrungrasmi

Abstract:

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Keywords: Electronics Load, Transient Over Voltage, Voltage Swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
10006 Reliability Evaluation of Distribution System Considering Distributed Generation

Authors: Raju Kaduru, Narsaiah Srinivas Gondlala

Abstract:

This paper presents an analytical approach for evaluating distribution system reliability indices in the presence of distributed generation. Modeling distributed generation and evaluation of distribution system reliability indices using the frequency duration technique. Using model implements and case studies are discussed. Results showed that location of DG and its effect in distribution reliability indices. In this respect, impact of DG on distribution system is investigated using the IEEE Roy Billinton test system (RBTS2) included feeder 1. Therefore, it will help to the distribution system planners in the DG resource placement.

Keywords: Distributed Generation, DG Location, Distribution System, Reliability Indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
10005 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method

Authors: Adrian T.Pleşca

Abstract:

In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
10004 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
10003 Restructuring Kuwait Electric Power System: Mandatory or Optional?

Authors: Osamah A. Alsayegh

Abstract:

Kuwait-s electric power system is vertically integrated organization owned and operated by the government. For more than five decades, the government of Kuwait has provided relatively reliable electric services to consumers with subsidized electric service fees. Given the country-s rapid socio-economical development and consequently the increase of electricity demand, a question that inflicts itself: Is it necessary to reform the power system to face the fast growing demand? This paper recommends that the government should consider the private sector as a partner in operating the power system. Therefore, power system restructuring is needed to allow such partnership. There are challenges that prevent such restructuring. Abstract recommendations toward resolving these challenges are proposed.

Keywords: Deregulation, electricity market, ISO, private sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3645
10002 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

Authors: R. Shivarudraswamy, D. N. Gaonkar

Abstract:

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Keywords: Distributed generation, voltage control, sensitivity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
10001 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: Distribution system, distribution transformer, power cable, technical losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
10000 Reliability Improvement with Optimal Placement of Distributed Generation in Distribution System

Authors: N. Rugthaicharoencheep, T. Langtharthong

Abstract:

This paper presents the optimal placement and sizing of distributed generation (DG) in a distribution system. The problem is to reliability improvement of distribution system with distributed generations. The technique employed to solve the minimization problem is based on a developed Tabu search algorithm and reliability worth analysis. The developed methodology is tested with a distribution system of Roy Billinton Test System (RBTS) bus 2. It can be seen from the case study that distributed generation can reduce the customer interruption cost and therefore improve the reliability of the system. It is expected that our proposed method will be utilized effectively for distribution system operator.

Keywords: Distributed generation Optimization technique Reliability improvement, Distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
9999 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks

Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi

Abstract:

Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.

Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
9998 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell

Authors: Narcis C. Ostahie, Tudor Sajin

Abstract:

In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.

Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
9997 Application of GAMS and GA in the Location and Penetration of Distributed Generation

Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati

Abstract:

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).

Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2597
9996 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248
9995 On using PEMFC for Electrical Power Generation on More Electric Aircraft

Authors: Jenica Ileana Corcau, Liviu Dinca

Abstract:

The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.

Keywords: Electrical power system, More Electric Aircraft, Fuel Cell, dc to dc converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
9994 Improvement of the Reliability of the Industrial Electric Networks

Authors: M. Bouguerra, I. Habi

Abstract:

The continuity in the electric supply of the electric installations is becoming one of the main requirements of the electric supply network (generation, transmission, and distribution of the electric energy). The achievement of this requirement depends from one side on the structure of the electric network and on the other side on the avaibility of the reserve source provided to maintain the supply in case of failure of the principal one. The avaibility of supply does not only depends on the reliability parameters of the both sources (principal and reserve) but it also depends on the reliability of the circuit breaker which plays the role of interlocking the reserve source in case of failure of the principal one. In addition, the principal source being under operation, its control can be ideal and sure, however, for the reserve source being in stop, a preventive maintenances which proceed on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system In this work and on the basis of the semi- markovian's processes, the influence of the time of interlocking the reserve source upon the reliability of an industrial electric network is studied and is given the optimal time of interlocking the reserve source in case of failure the principal one, also the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.

Keywords: Semi-Markovians processes, reliability, optimization, industrial electric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
9993 Modified Techniques for Distribution System Reliability Improvement by Parallel Operation of Transformers

Authors: Ohn Zin Lin, Okka, Cho Cho Myint

Abstract:

It is important to consider the effects of transformers on distribution system because they have the highest impact on system reliability. It is generally said that parallel operation of transformers (POT) can improve the system reliability. However, the estimation approach can be also considered for accuracy. In this paper, we propose a three-state components model and equations to determine the reliability improvement by POT, and cooperation of POT and distributed generation (DG). Based on the proposed model and techniques, the effect of POT is analyzed in four different tests with the consideration of conventional distribution system, distribution automation system (DAS) and DG. According to the results, the reliability is greatly improved by cooperation of POT, DAS and DG. The proposed model and methods are applicable to not only developing countries which have conventional distribution system but also developed countries in which DAS has already installed.

Keywords: Distribution system, reliability, dispersed generator, energy not supply, transformer parallel operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
9992 Minimization of Power Loss in Distribution Networks by Different Techniques

Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt

Abstract:

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6182
9991 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: Disturbance automation, electric power grid, smart grid, smart switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
9990 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System

Authors: J. Becker, R. Arnold

Abstract:

The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.

Keywords: Decision support system distribution logistics, potential analyses, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
9989 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
9988 Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai

Abstract:

This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.

Keywords: Electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
9987 Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition

Authors: S. Tupsie, A. Isaramongkolrak, P. Pao-la-or

Abstract:

This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.

Keywords: Transposition, Electromagnetic Field, Finite Element Method (FEM), Transmission Line, Computer Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3971