Search results for: Fast Information Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5781

Search results for: Fast Information Detection

3051 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
3050 Zinc Sulfide Concentrates and Optimization of their Roasting in Fluidezed Bed Reactor

Authors: B.S.Boyanov, M.P.Sandalski, K.I.Ivanov

Abstract:

The production of glass, ceramic materials and many non-ferrous metals (Zn, Cu, Pb, etc.), ferrous metals (pig iron) and others is connected with the use of a considerable number of initial solid raw materials. Before carrying out the basic technological processes (oxidized roasting, melting, agglomeration, baking) it is necessary to mix and homogenize the raw materials that have different chemical and phase content, granulometry and humidity. For this purpose zinc sulfide concentrates differing in origin are studied for their more complete characteristics using chemical, X-ray diffraction analyses, DTA and TGA as well as Mössbauer spectroscopy. The phases established in most concentrates are: β-ZnS, mZnS.nFeS, FeS2, CuFeS2, PbS, SiO2 (α-quartz). With the help of the developed by us a Web-based information system for a continued period of time different mix proportions from zinc concentrates are calculated and used in practice (roasting in fluidized bed reactor), which have to conform to the technological requirements of the zinc hydrometallurgical technological scheme.

Keywords: fluidized bed reactor, roasting, Web-based information system, zinc concentrates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
3049 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems

Authors: F. Mehran

Abstract:

In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.

Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3048 Application of Griddization Management to Construction Hazard Management

Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu

Abstract:

Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.

Keywords: Construction hazard, grid management, griddization computing, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3047 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend

Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono

Abstract:

Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.

Keywords: Communication technology between appliances, demand response, load monitoring, smart appliances and smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
3046 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City

Authors: Habibi Said Mustafa, Hiroko Ono

Abstract:

Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.

Keywords: Adaptation, informal settlements, Kabul, land readjustment, preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
3045 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage

Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain

Abstract:

This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.

Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6069
3044 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: Time-series clustering, feature extraction, hoax prediction, geospatial events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
3043 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Petar Penchev

Abstract:

The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.

Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58
3042 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: Authentication, iris recognition, Adaboost, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
3041 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: Risk, BIM, Shannon’s entropy, Fuzzy TOPSIS, construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
3040 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad S. Daba, J. P. Dubois

Abstract:

Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.

Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
3039 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method

Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.

Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
3038 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
3037 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services

Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.

Keywords: Internet of Things, IoT platform, service platform, virtual file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
3036 Extended Study on Removing Gaussian Noise in Mechanical Engineering Drawing Images using Median Filters

Authors: Low Khong Teck, Hasan S. M. Al-Khaffaf, Abdullah Zawawi Talib, Tan Kian Lam

Abstract:

In this paper, an extended study is performed on the effect of different factors on the quality of vector data based on a previous study. In the noise factor, one kind of noise that appears in document images namely Gaussian noise is studied while the previous study involved only salt-and-pepper noise. High and low levels of noise are studied. For the noise cleaning methods, algorithms that were not covered in the previous study are used namely Median filters and its variants. For the vectorization factor, one of the best available commercial raster to vector software namely VPstudio is used to convert raster images into vector format. The performance of line detection will be judged based on objective performance evaluation method. The output of the performance evaluation is then analyzed statistically to highlight the factors that affect vector quality.

Keywords: Performance Evaluation, Vectorization, Median Filter, Gaussian Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
3035 Exploring the Relationship between Computerization and Marketing Performance Case Study: Snowa Company

Authors: Mojtaba Molaahmadi, Morteza Raei Dehaghi, Abdolrahim Arghavan

Abstract:

The present study aims to explore the effect of computerization on marketing performance in Snowa Company. In other words, this study intends to respond to this question that whether or not, is there any relationship between utilization of computerization in marketing activities and marketing performance? The statistical population included 60 marketing managers of Snowa Company. In order to test the research hypotheses, Pearson correlation coefficient was employed. The reliability was equal to 96.8%. In this study, computerization was the independent variable and marketing performance was the dependent variable with characteristics of market share, improving the competitive position, and sales volume. The results of testing the hypotheses revealed that there is a significant relationship between utilization of computerization and market share, sales volume and improving the competitive position.

Keywords: Computerization, e-marketing information, information technology, marketing performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
3034 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
3033 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
3032 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
3031 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
3030 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
3029 Information Technology and Business Alignments among Different Divisions: A Comparative Analysis of Japan and South Korea

Authors: Michiko Miyamoto

Abstract:

This paper empirically investigates whether information technology (IT) strategies, business strategies, and divisions are aligned to meet overall business goals for Korean Small and medium-sized enterprises (SMEs), based on structure based Strategic Alignment Model, and make comparison with those of Japanese SMEs. Using 2,869 valid responses of Korean Human Capital Corporate Panel survey, a result of this study suggests that Korean human resources (HR) departments have a major influence over IT strategy, which is the same as Japanese SMEs, even though their management styles are quite different. As for IT strategy, it is not related to other departments at all for Korean SMEs. The Korean management seems to possess a great power over each division, such as Sales/Service, Research and Development/Technical Experts, HR, and Production.

Keywords: IT-business alignment, structured based strategic alignment model, structural equation model, human resources department.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
3028 Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Authors: Chien-Sheng Chen, Szu-Lin Su, Chuan-Der Lu

Abstract:

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

Keywords: Time of arrival (TOA), angle of arrival (AOA), non-line-of-sight (NLOS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
3027 Gene Selection Guided by Feature Interdependence

Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel

Abstract:

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
3026 Integrating Geographic Information into Diabetes Disease Management

Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng

Abstract:

Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.

Keywords: Geocoding, chronic disease management, quality of diabetes care, rate ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
3025 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
3024 The Innovative Information System for Systemic Approach of the Sustainability in the Enterprise

Authors: M. Izvercianu, L. Ivascu

Abstract:

This paper presents an innovative computer system that contributes to sustainable development of the enterprise. The research refers to a rethinking of traditional systems of collaboration and risk assessment, present in any organization, leading to a sustainable enterprise. This concept integrates emerging tools that allow the implementation and exploitation of the collective intelligence of the enterprise, allowing the exchange of contextual, agile and simplified information, and collaboration with networks of customers and partners in an environment where risks are controlled. Risk assessment is done in a systemic way: the enterprise as the system compared to the contained departments and the enterprise as a subsystem compared to: families of international standards and sustainability-s responsibilities. The enterprise, in this systemic vision, responds to the requirements that any existing system to operate continuously in an indefinite future without reaching key resource depletion. The research is done by integrating collaborative science, engineering, management, psychology, obtaining thus a cornerstone of sustainable development of the enterprise.

Keywords: Enterprise 2.0, ISO, Risk management, Sustainable development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
3023 Flow Duration Curves and Recession Curves Connection through a Mathematical Link

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.

Keywords: Chronological sequence of discharges, recession curves, streamflow duration curves, water concession.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
3022 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603