Search results for: network data envelopment analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14887

Search results for: network data envelopment analysis

12187 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
12186 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
12185 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
12184 Evaluation of University Technology Malaysia on Campus Transport Access Management

Authors: Arash Moradkhani Roshandeh, Othman Che Puan

Abstract:

Access Management is the proactive management of vehicular access points to land parcels adjacent to all manner of roadways. Good access management promotes safe and efficient use of the transportation network. This study attempts to utilize archived data from the University Technology of Malaysia on-campus area to assess the accuracy with which access management display some benefits. Results show that usage of access management reduces delay and fewer crashes. Clustered development can improve walking, cycling and transit travel, reduce parking requirements and improve emergency responses. Effective Access Management planning can also reduce total roadway facility costs by reducing the number of driveways and intersections. At the end after presenting recommendations some of the travel impact, and benefits that can be derived if these suggestions are implemented have been summarized with the related comments.

Keywords: Access Management, Delay, Density, Traffic Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
12183 A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks

Authors: D. SuganyaDevi, G. Padmavathi

Abstract:

Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.

Keywords: Key Distribution, Mobile Adhoc Network, Multicast and Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
12182 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens

Authors: R. Tamborrino, F. Rinaudo

Abstract:

Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.

Keywords: Digital urban history, census, digitalisation, GIS, modelling, digital humanities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
12181 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
12180 Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool

Authors: Abhay Bodake, Ping Sui, Hafeez Syed, Ratish Kadam

Abstract:

Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.

Keywords: FEA, M/LWD, Oil & Gas, Strain Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
12179 Analysis of the Impact of Rainfall Change on the Seasonal Monsoon over the Jaipur District

Authors: Randhir Singh Baghel

Abstract:

In this work, long-term spatiotemporal changes in rainfall are investigated and assessed at the meteorological divisional level using whole-year data from Rajasthan, India. Data from each of the district's eight tehsils are studied to see how the rainfall pattern has altered over the last 10 years.  We primarily compare information from the Jaipur district in Rajasthan, India, at the tehsil level. We looked at the full year, and from January to December, there was constantly more rain than any other month.  Furthermore, we compare the research of annual and monthly rainfall. Havey rainfall is also shown for two months, July and August.

Keywords: Climate change, temperature, seasonal monsoons, rainfall variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
12178 Analyzing of Public Transport Trip Generation in Developing Countries; A Case Study in Yogyakarta, Indonesia

Authors: S. Priyanto, E.P Friandi

Abstract:

Yogyakarta, as the capital city of Yogyakarta Province, has important roles in various sectors that require good provision of public transportation system. Ideally, a good transportation system should be able to accommodate the amount of travel demand. This research attempts to develop a trip generation model to predict the number of public transport passenger in Yogyakarta city. The model is built by using multiple linear regression analysis, which establishes relationship between trip number and socioeconomic attributes. The data consist of primary and secondary data. Primary data was collected by conducting household surveys which randomly selected. The resulted model is further applied to evaluate the existing TransJogja, a new Bus Rapid Transit system serves Yogyakarta and surrounding cities, shelters.

Keywords: Multiple linear regression, shelter evaluation, travel demand, trip generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
12177 Distributed Data-Mining by Probability-Based Patterns

Authors: M. Kargar, F. Gharbalchi

Abstract:

In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases.

Keywords: Data-mining, Decision tree, Decision graph, Pattern, Relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
12176 Market and Innovation Orientation: A Typology of Public Housing Companies in Sweden

Authors: Agneta Sundström, Zahra Ahmadi, Akmal Hyder

Abstract:

The purpose of this paper is to develop a typology based on market orientation (MO) and innovation orientation (IO), and to illustrate to what extent housing companies in Sweden fit within this framework. A qualitative study on 11 public housing companies in the central part of Sweden has been conducted by the help of open and semi-structured questions for data collection. Four public housing company types- i.e. reactive prospector, proactive prospector, reactive defender and proactive defender have been identified by the combination of MO-IO dimensions. Future research can include other dimensions like entrepreneurship and network to observe how it particularly affects MO. An empirical study can compare public and private housing companies on the basis of MO and IO dimensions. One major contribution of the paper is the proposition of typology which can be used to describe public housing companies and deciding their future course of actions.

Keywords: Customer-led, economy, innovativeness, market orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
12175 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
12174 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
12173 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
12172 A Comparative Analysis of Performance and QoS Issues in MANETs

Authors: Javed Parvez, Mushtaq Ahmad Peer

Abstract:

Mobile Ad hoc networks (MANETs) are collections of wireless mobile nodes dynamically reconfiguring and collectively forming a temporary network. These types of networks assume existence of no fixed infrastructure and are often useful in battle-field tactical operations or emergency search-and-rescue type of operations where fixed infrastructure is neither feasible nor practical. They also find use in ad hoc conferences, campus networks and commercial recreational applications carrying multimedia traffic. All of the above applications of MANETs require guaranteed levels of performance as experienced by the end-user. This paper focuses on key challenges in provisioning predetermined levels of such Quality of Service (QoS). It also identifies functional areas where QoS models are currently defined and used. Evolving functional areas where performance and QoS provisioning may be applied are also identified and some suggestions are provided for further research in this area. Although each of the above functional areas have been discussed separately in recent research studies, since these QoS functional areas are highly correlated and interdependent, a comprehensive and comparative analysis of these areas and their interrelationships is desired. In this paper we have attempted to provide such an overview.

Keywords: Bandwidth Reservation, Congestion, DynamicNetwork Topology, End-to-End Delay, Flexible QoS Model forMANET(FQMM), Hidden Terminal, Mobile AdhocNetwork(MANET), Packet Jitter, Queuing, Quality-of-Service(QoS), Relative Bandwidth Service Differentiation(RBSD), Resource ReSerVation Protocol (RSVP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
12171 Modeling of Random Variable with Digital Probability Hyper Digraph: Data-Oriented Approach

Authors: A. Habibizad Navin, M. Naghian Fesharaki, M. Mirnia, M. Kargar

Abstract:

In this paper we introduce Digital Probability Hyper Digraph for modeling random variable as the hierarchical data-oriented model.

Keywords: Data-Oriented Models, Data Structure, DigitalProbability Hyper Digraph, Random Variable, Statistic andProbability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
12170 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
12169 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
12168 The Influences of Marketing Mix on Customer Purchasing Behavior at Chatuchak Plaza Market

Authors: Bundit Pungnirund

Abstract:

The objective of this research was to study the influence of marketing mix on customers purchasing behavior. A total of 397 respondents were collected from customers who were the patronages of the Chatuchak Plaza market. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The research analysis disclosed that there were three variables of marketing mix which included price (X2), place (X3), and product (X1) which had an influence on the frequency of customer purchasing. These three variables can predict a purchase about 30 percent of the time by using the equation; Y1 = 6.851 + .921(X2) + .949(X3) + .591(X1). It also found that in terms of marketing mixed, there were two variables had an influence on the amount of customer purchasing which were physical characteristic (X6), and the process (X7). These two variables are 17 percent predictive of a purchasing by using the equation: Y2 = 2276.88 + 2980.97(X6) + 2188.09(X7).

Keywords: Influences, Marketing Mixed, Purchasing Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11540
12167 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
12166 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks

Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing

Abstract:

The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.

Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
12165 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
12164 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis

Abstract:

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10221
12163 The Use of Software and Internet Search Engines to Develop the Encoding and Decoding Skills of a Dyslexic Learner: A Case Study

Authors: Rabih Joseph Nabhan

Abstract:

This case study explores the impact of two major computer software programs Learn to Speak English and Learn English Spelling and Pronunciation, and some Internet search engines such as Google on mending the decoding and spelling deficiency of Simon X, a dyslexic student. The improvement in decoding and spelling may result in better reading comprehension and composition writing. Some computer programs and Internet materials can help regain the missing awareness and consequently restore his self-confidence and self-esteem. In addition, this study provides a systematic plan comprising a set of activities (four computer programs and Internet materials) which address the problem from the lowest to the highest levels of phoneme and phonological awareness. Four methods of data collection (accounts, observations, published tests, and interviews) create the triangulation to validly and reliably collect data before the plan, during the plan, and after the plan. The data collected are analyzed quantitatively and qualitatively. Sometimes the analysis is either quantitative or qualitative, and some other times a combination of both. Tables and figures are utilized to provide a clear and uncomplicated illustration of some data. The improvement in the decoding, spelling, reading comprehension, and composition writing skills that occurred is proved through the use of authentic materials performed by the student under study. Such materials are a comparison between two sample passages written by the learner before and after the plan, a genuine computer chat conversation, and the scores of the academic year that followed the execution of the plan. Based on these results, the researcher recommends further studies on other Lebanese dyslexic learners using the computer to mend their language problem in order to design and make a most reliable software program that can address this disability more efficiently and successfully.

Keywords: Analysis, awareness, dyslexic, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
12162 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection

Authors: N. Arulanand, K. Premalatha

Abstract:

Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.

Keywords: Cuckoo search algorithm, levy’s flight, metaheuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
12161 Modeling and Analysis of a Cruise Control System

Authors: Anthony Spiteri Staines

Abstract:

This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.

Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
12160 Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India

Authors: Punitha Periyasamy, Mahalingam Sudalaimuthu, Sachikanta Nanda, Arasu Sundaram

Abstract:

India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi Nadhi sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Virudhachalam in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.

Keywords: ArcGIS, DEM, Groundwater, Recharge, Weighted Overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2993
12159 Study of Efficiency and Capability LZW++ Technique in Data Compression

Authors: Yusof. Mohd Kamir, Mat Deris. Mohd Sufian, Abidin. Ahmad Faisal Amri

Abstract:

The purpose of this paper is to show efficiency and capability LZWµ in data compression. The LZWµ technique is enhancement from existing LZW technique. The modification the existing LZW is needed to produce LZWµ technique. LZW read one by one character at one time. Differ with LZWµ technique, where the LZWµ read three characters at one time. This paper focuses on data compression and tested efficiency and capability LZWµ by different data format such as doc type, pdf type and text type. Several experiments have been done by different types of data format. The results shows LZWµ technique is better compared to existing LZW technique in term of file size.

Keywords: Data Compression, Huffman Encoding, LZW, LZWµ, RLL, Size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
12158 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data

Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci

Abstract:

The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.

Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431