Search results for: waterbody identification
713 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: Landsat 8, oligotrophic lake, remote sensing, water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555712 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj
Abstract:
This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097711 Analysis of Risk-Based Disaster Planning in Local Communities
Authors: R. A. Temah, L. A. Nkengla-Asi
Abstract:
Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.
Keywords: Capabilities, disaster planning, hazards, local community, risk-based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068710 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534709 Chances and Challenges of Intelligent Technologies in the Production and Retail Sector
Authors: Carsten Röcker
Abstract:
This paper provides an introduction into the evolution of information and communication technology and illustrates its usage in the work domain. The paper is sub-divided into two parts. The first part gives an overview over the different phases of information processing in the work domain. It starts by charting the past and present usage of computers in work environments and shows current technological trends, which are likely to influence future business applications. The second part starts by briefly describing, how the usage of computers changed business processes in the past, and presents first Ambient Intelligence applications based on identification and localization information, which are already used in the production and retail sector. Based on current systems and prototype applications, the paper gives an outlook of how Ambient Intelligence technologies could change business processes in the future.Keywords: Ambient Intelligence, Ubiquitous Computing, Business Applications, Radio Frequency Identification (RFID).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918708 Ambient Intelligence in the Production and Retail Sector: Emerging Opportunities and Potential Pitfalls
Authors: Carsten Röcker
Abstract:
This paper provides an introduction into the evolution of information and communication technology and illustrates its usage in the work domain. The paper is sub-divided into two parts. The first part gives an overview over the different phases of information processing in the work domain. It starts by charting the past and present usage of computers in work environments and shows current technological trends, which are likely to influence future business applications. The second part starts by briefly describing, how the usage of computers changed business processes in the past, and presents first Ambient Intelligence applications based on identification and localization information, which are already used in the production and retail sector. Based on current systems and prototype applications, the paper gives an outlook of how Ambient Intelligence technologies could change business processes in the future.Keywords: Ambient Intelligence, Ubiquitous Computing, Business Applications, Radio Frequency Identification (RFID)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864707 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346706 Identification of Aquatic and Semi aquatic Birds of Sattarkhan Lake (East Azerbaijan- Iran)
Authors: Mahbobeh Hajirostamloo
Abstract:
Aquatic and semi aquatic birds as a group are suited to feed and breed in environments in which water forms a fundamental part. These birds are biological indicator in aquatic environment, because these birds belong to the top level of food chain in aquatic ecosystems. There are 61 species in 14 families of aquatic and semi aquatic birds in Iran. The birds of the Sattarkhan Lake belong to 16 species in 8 families which include 26.2 percent of total Aquatic and semi aquatic bird species and 57% of Aquatic and semi aquatic bird's family of Iran. Study was carried out monthly at Sattarkhan Lake show the existence of Phalacrocorax carbo, Ardea cinerea, Egretta alba, Egretta garzetta, Bubulcus ibis, Botaurus stellaris, Sterna hirundo, Chlidonias leucopterus, Larus minutus, Larus argentatus, Larus ridibunbus, Alcedo atthis, Ciconia ciconia, Plegadis falcinellus, Circus aeruginosus, Corvus frugilegusKeywords: Aquatic bird, Sattarkhan Lake, Identification, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730705 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Authors: Young-Seok Choi
Abstract:
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619704 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field
Authors: Nastaran Moosavi, Mohammad Mokhtari
Abstract:
Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.Keywords: Density, P-impedance, S-impedance, post-stack seismic inversion, pre-stack seismic inversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228703 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318702 Identification of Conserved Domains and Motifs for GRF Gene Family
Authors: Jafar Ahmadi, Nafiseh Noormohammadi, Sedigheh Fabriki Ourang
Abstract:
GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.
Keywords: Domain, Gene Family, GRF, Motif.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330701 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420700 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas
Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen
Abstract:
In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.
Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544699 Preparation a Study on the Use of the Resident Registration Number and Alternatives for RRN
Authors: Hyejin Pak, Changsoo Kim, Healahng Choi
Abstract:
The resident registration number was adopted for the purposes of enhanced services for resident convenience and effective performance of governmental administrative affairs. However, it has been used for identification purposes customarily and irrationally in line with the development and spread of the Internet. In response to the growing concern about the leakage of collected RRNs and possible abuses of stolen RRNs, e.g. identity theft, for crimes, the Korean Communications Commission began to take legal/regulatory actions in 2011 to minimize the online collection and use of resident registration numbers. As the use of the RRN was limited after the revision of the Act on Promotion of Information and Communications Network Utilization and Information Protection, etc., online business providers were required to have alternatives to the RRN for the purpose of identifying the user's identity and age, in compliance with the law, and settling disputes with customers. This paper presents means of verifying the personal identity by taking advantage of the commonly used infrastructure and simply replacing personal information entered and stored, without requiring users to enter their RRNs.
Keywords: Resident Registration Numbers(RRNs), Alternative identification for RRNs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909698 Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)
Authors: Jamalizadeh, M.R., Moghaddamnia, A., Piri, J., Arbabi, V., Homayounifar, M., Shahryari, A.
Abstract:
Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.Keywords: Dust Storm, Gamma Test, Prediction, ANNs, Zabol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152697 Identification of Differentially Expressed Gene(DEG) in Atherosclerotic Lesion by Annealing Control Primer (ACP)-Based Genefishing™ PCR
Authors: M. Maimunah, G. A. Froemming, H. Nawawi, M. I. Nafeeza, O. Effat, M. Y. Rosmadi, M. S. Mohamed Saifulaman
Abstract:
Atherosclerosis was identified as a chronic inflammatory process resulting from interactions between plasma lipoproteins, cellular components (monocyte, macrophages, T lymphocytes, endothelial cells and smooth muscle cells) and the extracellular matrix of the arterial wall. Several types of genes were known to express during formation of atherosclerosis. This study is carried out to identify unknown differentially expressed gene (DEG) in atherogenesis. Rabbit’s aorta tissues were stained by H&E for histomorphology. GeneFishing™ PCR analysis was performed from total RNA extracted from the aorta tissues. The DNA fragment from DEG was cloned, sequenced and validated by Real-time PCR. Histomorphology showed intimal thickening in the aorta. DEG detected from ACP-41 was identified as cathepsin B gene and showed upregulation at week-8 and week-12 of atherogenesis. Therefore, ACP-based GeneFishing™ PCR facilitated identification of cathepsin B gene which was differentially expressed during development of atherosclerosis.
Keywords: Atherosclerosis, GeneFishing™ PCR, cathepsin B gene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956696 Automatic Vehicle Identification by Plate Recognition
Authors: Serkan Ozbay, Ergun Ercelebi
Abstract:
Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7586695 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification
Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui
Abstract:
The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.
Keywords: Distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855694 Information Security in E-Learning through Identification of Humans
Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour
Abstract:
During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649693 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.
Keywords: Adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894692 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484691 Identifying the Kinematic Parameters of Hexapod Machine Tool
Authors: M. M. Agheli, M. J. Nategh
Abstract:
Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367690 Security Enhanced RFID Middleware System
Authors: Jieun Song, Taesung Kim, Sokjoon Lee, Howon Kim
Abstract:
Recently, the RFID (Radio Frequency Identification) technology attracts the world market attention as essential technology for ubiquitous environment. The RFID market has focused on transponders and reader development. But that concern has shifted to RFID software like as high-valued e-business applications, RFID middleware and related development tools. However, due to the high sensitivity of data and service transaction within the RFID network, security consideration must be addressed. In order to guarantee trusted e-business based on RFID technology, we propose a security enhanced RFID middleware system. Our proposal is compliant with EPCglobal ALE (Application Level Events), which is standard interface for middleware and its clients. We show how to provide strengthened security and trust by protecting transported data between middleware and its client, and stored data in middleware. Moreover, we achieve the identification and service access control against illegal service abuse. Our system enables secure RFID middleware service and trusted e-business service.Keywords: RFID Middleware, ALE (Application Level Events), Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067689 Dynamic Time Warping in Gait Classificationof Motion Capture Data
Authors: Adam Świtoński, Agnieszka Michalczuk, Henryk Josiński, Andrzej Polański, KonradWojciechowski
Abstract:
The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.
Keywords: Biometrics, dynamic time warping, gait identification, motion capture, time series classification, quaternion distance functions, attribute ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611688 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842687 Evaluation of the Analytic for Hemodynamic Instability as A Prediction Tool for Early Identification of Patient Deterioration
Authors: Bryce Benson, Sooin Lee, Ashwin Belle
Abstract:
Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.
Keywords: Clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450686 Network Application Identification Based on Communication Characteristics of Application Messages
Authors: Yuji Waizumi, Yuya Tsukabe, Hiroshi Tsunoda, Yoshiaki Nemoto
Abstract:
A person-to-person information sharing is easily realized by P2P networks in which servers are not essential. Leakage of information, which are caused by malicious accesses for P2P networks, has become a new social issues. To prevent information leakage, it is necessary to detect and block traffics of P2P software. Since some P2P softwares can spoof port numbers, it is difficult to detect the traffics sent from P2P softwares by using port numbers. It is more difficult to devise effective countermeasures for detecting the software because their protocol are not public. In this paper, a discriminating method of network applications based on communication characteristics of application messages without port numbers is proposed. The proposed method is based on an assumption that there can be some rules about time intervals to transmit messages in application layer and the number of necessary packets to send one message. By extracting the rule from network traffic, the proposed method can discriminate applications without port numbers.Keywords: Network Application Identification, Message Transition Pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361685 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774684 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132