Search results for: soft error rates
1978 Large-Eddy Simulation of Hypersonic Configuration Aerodynamics
Authors: Huang Shengqin, Xiao Hong
Abstract:
LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.Keywords: Hypersonic, LES, mixed Subgrid-scale model, experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721977 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.
Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351976 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code
Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader
Abstract:
In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.
Keywords: Bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131975 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961974 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels
Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen
Abstract:
Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.Keywords: CFD, coupling, discrete phase, parcel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6101973 On Constructing a Cubically Convergent Numerical Method for Multiple Roots
Authors: Young Hee Geum
Abstract:
We propose the numerical method defined by
xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N,
and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.
Keywords: Asymptotic error constant, iterative method , multiple root, root-finding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15071972 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891971 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.
Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11621970 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods
Authors: Mochammad Dewo, Sumarsono Sudarto
Abstract:
The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.
Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241969 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: FSO, RF, hybrid, AF, DF, SER, SNR, GG channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10641968 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
Authors: Il Young Song, Du Yong Kim, Vladimir Shin
Abstract:
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11991967 Widening Students Perspective: Empowering Them with Systems Methodologies
Authors: Albertus G. Joubert, Roelien Goede
Abstract:
Benefits to the organisation are just as important as technical ability when it comes to software success. The challenge is to provide industry with professionals who understand this. In other words: How to teach computer engineering students to look beyond technology, and at the benefits of software to organizations? This paper reports on the conceptual design of a section of the computer networks module aimed to sensitize the students to the organisational context. Checkland focuses on different worldviews represented by various role players in the organisation. He developed the Soft Systems Methodology that guides purposeful action in organisations, while incorporating different worldviews in the modeling process. If we can sensitize students to these methods, they are likely to appreciate the wider context of application of system software. This paper will provide literature on these concepts as well as detail on how the students will be guided to adopt these concepts.Keywords: Checkland, Soft Systems Methodology, Systems Approach, System Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14401966 On Use of Semiconductor Detector Arrays on COMPASS Tokamak
Authors: V. Weinzettl, M. Imrisek, J. Havlicek, J. Mlynar, D. Naydenkova, P. Hacek, M. Hron, F. Janky, D. Sarychev, M. Berta, A. Bencze, T. Szabolics
Abstract:
Semiconductor detector arrays are widely used in high-temperature plasma diagnostics. They have a fast response, which allows observation of many processes and instabilities in tokamaks. In this paper, there are reviewed several diagnostics based on semiconductor arrays as cameras, AXUV photodiodes (referred often as fast “bolometers") and detectors of both soft X-rays and visible light installed on the COMPASS tokamak recently. Fresh results from both spring and summer campaigns in 2012 are introduced. Examples of the utilization of the detectors are shown on the plasma shape determination, fast calculation of the radiation center, two-dimensional plasma radiation tomography in different spectral ranges, observation of impurity inflow, and also on investigation of MHD activity in the COMPASS tokamak discharges.Keywords: Bolometry, plasma diagnostics, soft X-rays, tokamak.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25891965 The Effect of a Free -Trade Agreement upon Agricultural Imports
Authors: Andres G. Victorio, Montita Rungswang
Abstract:
A free-trade agreement is found to increase Thailand-s agricultural imports from New Zealand, despite the short span of time for which the agreement has been operational. The finding is described by autoregressive estimates that correct for possible unit roots in the data. The agreement-s effect upon imports is also estimated while considering an error-correction model of imports against gross domestic product.Keywords: Agricultural imports, free trade, unit roots, cointegration, error correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18101964 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.
Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901963 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.
Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39271962 Simultaneously Reduction of NOx and Soot Emissions in a DI Heavy Duty diesel Engine Operating at High Cooled EGR Rates
Authors: Sh. Khalilarya, S. Jafarmadar, H. Khatamnezhad, Gh. Javadirad, M. Pourfallah
Abstract:
One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels corresponding to reduced temperature combustion, soot emission after first increasing, is decreased beyond 40% EGR and get the lowest value at 58% EGR rate. Soot and NOx emissions are simultaneously decreased at advanced injection timing before 20.5 ºCA BTDC in conjunction with 58% cooled EGR rate in compared to baseline case.Keywords: Diesel Engine, Low Temperature Combustion, High Cooled EGR Rates, Combustion, Emissions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311961 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree
Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman
Abstract:
In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22811960 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541959 A Pattern Language for Software Debugging
Authors: Mehdi Amoui, Mohammad Zarafshan, Caro Lucas
Abstract:
In spite of all advancement in software testing, debugging remains a labor-intensive, manual, time consuming, and error prone process. A candidate solution to enhance debugging process is to fuse it with testing process. To achieve this integration, a possible solution may be categorizing common software tests and errors followed by the effort on fixing the errors through general solutions for each test/error pair. Our approach to address this issue is based on Christopher Alexander-s pattern and pattern language concepts. The patterns in this language are grouped into three major sections and connect the three concepts of test, error, and debug. These patterns and their hierarchical relationship shape a pattern language that introduces a solution to solve software errors in a known testing context. Finally, we will introduce our developed framework ADE as a sample implementation to support a pattern of proposed language, which aims to automate the whole process of evolving software design via evolutionary methods.Keywords: Coding Errors, Software debugging, Testing, Patterns, Pattern Language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101958 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades
Authors: Magdi M. E. Zumrawi, Nehla Mansour
Abstract:
This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.Keywords: Geogrid, reinforcement, stabilization, subgrade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28011957 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22421956 A Review on Soft Computing Technique in Intrusion Detection System
Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman
Abstract:
Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.Keywords: Intrusion Detection System, security, soft computing, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641955 Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian
Abstract:
In this research, the changes in bubbles diameter and number that may occur due to the change in heat flux of pure water during pool boiling process. For this purpose, test equipment was designed and developed to collect test data. The bubbles were graded using Caliper Screen software. To calculate the growth and nucleation rates of bubbles under different fluxes, population balance model was employed. The results show that the increase in heat flux from q=20 kw/m2 to q= 102 kw/m2 raised the growth and nucleation rates of bubbles.
Keywords: Heat flux, bubble growth, bubble nucleation, population balance model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24681954 Influence of Temperature Variations on Calibrated Cameras
Authors: Peter Podbreznik, Božidar Potocnik
Abstract:
The camera parameters are changed due to temperature variations, which directly influence calibrated cameras accuracy. Robustness of calibration methods were measured and their accuracy was tested. An error ratio due to camera parameters change with respect to total error originated during calibration process was determined. It pointed out that influence of temperature variations decrease by increasing distance of observed objects from cameras.Keywords: camera calibration, perspective projection matrix, epipolar geometry, temperature variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581953 The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates
Authors: D. Aubin, D. Won, H. Schleibinger, P. Lajoie, D. Gauvin, J.-M. Leclerc
Abstract:
This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates.Keywords: Asthma, field study, indoor air quality, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7461952 Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes
Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf
Abstract:
In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.
Keywords: Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme, and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461951 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31891950 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.
Keywords: Medical Image Watermarking (MIW), e-health system, error correction, Hamming code, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431949 A Distributed Group Mutual Exclusion Algorithm for Soft Real Time Systems
Authors: Abhishek Swaroop, Awadhesh Kumar Singh
Abstract:
The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. Several solutions of the GME problem have been proposed for message passing distributed systems. However, none of these solutions is suitable for real time distributed systems. In this paper, we propose a token-based distributed algorithms for the GME problem in soft real time distributed systems. The algorithm uses the concepts of priority queue, dynamic request set and the process state. The algorithm uses first come first serve approach in selecting the next session type between the same priority levels and satisfies the concurrent occupancy property. The algorithm allows all n processors to be inside their CS provided they request for the same session. The performance analysis and correctness proof of the algorithm has also been included in the paper.Keywords: Concurrency, Group mutual exclusion, Priority, Request set, Token.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713