

Abstract—In spite of all advancement in software testing,

debugging remains a labor-intensive, manual, time consuming, and
error prone process. A candidate solution to enhance debugging
process is to fuse it with testing process. To achieve this integration,
a possible solution may be categorizing common software tests and
errors followed by the effort on fixing the errors through general
solutions for each test/error pair. Our approach to address this issue is
based on Christopher Alexander’s pattern and pattern language
concepts. The patterns in this language are grouped into three major
sections and connect the three concepts of test, error, and debug.
These patterns and their hierarchical relationship shape a pattern
language that introduces a solution to solve software errors in a
known testing context.

Finally, we will introduce our developed framework ADE as a
sample implementation to support a pattern of proposed language,
which aims to automate the whole process of evolving software
design via evolutionary methods.

Keywords—Coding Errors, Software debugging, Testing,

Patterns, Pattern Language

I. INTRODUCTION
ESTING and debugging are two crucial parts of software
development. Actually, in typical software projects, 50%

of resources are dedicated to testing, and in safety-critical
systems this ratio could be raised to 80% [1]. Alan Turing
early in 50’s wrote an article entitled “Checking out a Large
Routine”, introducing testing algorithms in a software
development process [2], and since then various testing
techniques are developed. In addition, several contributions
are proposed to classify these techniques [6]. Although these
classifications differ in an abstraction level of software as well
as the aspects of software under test, they are introduced to
provide a complete solution for a set of vital tests. However,
because of the huge input domain space of complex systems,
in most cases it is impossible to verify the correctness of
software systems for their behavior and structure. As a result,
many test automation techniques have been proposed to ease
and reduce the cost of test process [7, 8]. Most of these
techniques are based on search-based techniques whereas

Manuscript received December 14, 2005.
M. Amoui is with the Control and Intelligent Processing Center of

Excellence, Electrical and Computer Eng. Dept., University of Tehran, Tehran
11365-4563, IRAN (phone: +98-912-3161002; fax: +98-21-66485489; e-
mail: mehdi.amoui@ece.ut.ac.ir).

M. Zarafshan is with the University of Tehran, Tehran 11365-4563, IRAN
(e-mail: mohammad.zarafshan@ece.ut.ac.ir).

C. Lucas is with the Control and Intelligent Processing Center of
Excellence, Electrical and Computer Eng. Dept., University of Tehran, Tehran
11365-4563, IRAN (e-mail: lucas@ipm.ir).

others use random test [9].
In spite of all advancement in software testing, debugging

remains a labor-intensive, manual, time consuming, and error
prone process. In fact, a report in 1997 claimed that many
programmers still prefer the manual insertion of “print”
statements as their debugging technique of choice [3]. In
addition, an informal survey in the same year indicates that
manual techniques, such as inserting print statements,
manually executing a test case, or inserting breakpoints,
accounted for 78% of real-world programmers’ attempts to
solve exceptionally difficult bugs [4, 5].

As testing and debugging are tightly coupled, a candidate
solution to enhance debugging process is to fuse it with
testing process. To achieve this integration, a possible solution
may be categorizing common software tests and errors. This
solution is followed by the effort on fixing the errors through
looking up a table of solutions for each test/error pair. The
categories themselves may be described using subcategories
that are more detailed. Using this approach, we could form a
tree of related solutions that are grouped based on their
context and problem. Ultimately, this tree could able us to
define patterns that cover each category and its subcategories.

Our approach to address claimed issue is based on
Christopher Alexander’s pattern and pattern language concept
[10]. A pattern is a piece of literature that describes a problem
and a general solution for the problem in a particular context
[11]. Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a solution.
The pattern is, in short, a solution to a problem in a context,
also includes the rules, which tell us when this pattern
happens. Every pattern contains a description for each part of
its elements, and an example that helps to illustrate the pattern
[12]. Moreover, a pattern language is a collection of patterns
that are related to each other by virtue of solving the same
problems or parts of a solution to a larger, partitioned problem
[10]. Therefore, our patterns and their hierarchical relationship
shape a pattern language that introduces a solution to solve
software errors in a known testing context.

This paper is organized as follows: In section II pattern
language for software debugging is proposed. Section III
introduces patterns of this language and finally section IV
explains the advantage of this pattern language and its
possible applications in further works.

II. PATTERN LANGUAGE
As test and debug are general terms used in various fields of

engineering, the patterns of this language focus on a software
system regardless of other miscellaneous systems. The

A Pattern Language for Software Debugging
Mehdi Amoui, Mohammad Zarafshan, and Caro Lucas

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

885International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

patterns in our language are grouped and named into three
major sections according to diverse set of test contexts. Each
section starts with a brief summary that introduces the patterns
described in the section. The patterns and their relationships in
the language are depicted graphically in Figure 1, and
summarized at the end of this paper in the Appendix as a
quick reference. These sections are:
• Section A, Software Patterns, This section includes the two

general patterns of behavioral and structural debugging.
These two patterns are the parent of all patterns introduced
in this pattern language. From another point of view, this
section itself is the parent of the two other sections.

• Section B, Program Patterns, The patterns belonging to
this section cover a run-time model of software called
program. The tests in this section vary from non-functional
to fully functional tests.

• Section C, Code Patterns, Patterns in this group deal with
testing the source code of software under test. The code will
be test for its structure, quality assurance, coding standards
and compilation test. Optional test here may include model
compatibility check, design pattern matching and code
metrics.
Although program and code sections break down the

context of software testing into two distinct partitions, there
are quite a few test techniques, such as gray-box [27], which
combines both behavior and structural information for the
purpose of testing [9]. As a result, an additional program-code
section may be added to this list.

Fig. 1 Debugging Pattern Language

A. Conventions
This pattern language is written based on Pattern Writing

pattern language developed by Meszaros and Doble [28].
Therefore, the patterns presented here are developed in
reference to the solutions provided in Pattern Writing
patterns. According to this pattern language, pattern names are
indicated in italics and pattern terms are indicated in bold.

Moreover, all patterns in this language are developed
regarding to a unique rule. According to this rule, the pattern
context is the testing condition and the problem is a
collection of errors generated after performing a test defined
in context. Finally, the solution covers the debugging
procedure in a specific software test. Figure 2 illustrate this
rule.

B. How to Use These Patterns
This language is considered as a catalog of patterns. To find

a solution for a particular coding error problem, one should
refer to ‘Patterns Quick Reference’, and then check if any of
the problems resemble the one we are trying to solve. Once a
pattern of interest is determined, one could look at the
Context and Forces parts for guidance on determining
whether the pattern is applicable to the specific situation. We
also developed an Example for each pattern but to get further
appreciation of the nuances, the patterns can be improved by
adding Rationale, Resulting Context and Related Patterns
parts.

III. PATTERNS

A. Software Patterns
A.1 Pattern: Behavioral
Context: Perform one or more tests on software to ensure that
it behaves exactly as it should, according to its specification or
customer requirements.
Problem: Software does not behave as it should, due to
unexpected error or undesired output.
Forces:

- To detect behavioral errors, an executable version of
software is required; so the software should pass
compilation tests.

- Software specification is required.
- Final user could be considered as a co-tester.
- Enterprise software systems are complex -up to 1020 states

in a large system- that testers are not currently able to test
software well enough to insure its correct operation [13].

Solution: Examine the type of specification errors; divide
them as functional or non-functional error. Refer to functional
spec pattern in case of functional spec error and refer to non-
functional spec pattern in case of non-functional spec error.
For performing more precise test and debug procedure,
Coverage Pattern is also suitable.

A.2 Pattern: Structural
Context: Software structure may be presented in various
abstraction levels and notations. The two most common
representations of software structure are a source code and a
design model. Any test process that deal with these
representations and the relation among them is considered as a
structural test.
Problem: There is a structural error or a rule violation
detected by a test procedure.
Forces:

- Source code should be accessible.
- Structural testing and verification in large and complex

software, is highly dependant on test automation tools.
- Although each structural representation demonstrates an

aspect of software, they all need to be coordinated.
- Reverse engineering could be used to check model

compatibility.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

886International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

Solution: Check the type of error and its level of abstraction.
Then refer to compilation pattern in case of compile error and
refer to quality assurance pattern in case of coding rules
violation or bad metrics. In addition, to resolve
incompatibility of code and model, CASE tools are helpful to
detect discordant parts.

B. Black-Box (Program) Patterns
Black-box testing refers to the testing techniques that

assume no knowledge of software internal structure or
implementation. Usually this kind of test uses an executable
program as a test input. The two most prominent black-box
approaches are functional testing and non-functional testing.
Moreover, user acceptance tests take place in this category,
and may extensively assist the development team to find
program errors. In particular, testing to ensure that the
software correctly processes different parts of its input and
output domains is an important black-box activity [14].

B1. Pattern: Functional Spec
Context: The ranges of tests that assume the program as a
black-box are under consideration. The only important factor
in functional testing is the relation between software input and
its corresponding output.
Problem: According to software spec, there is at least one test
case where the software output is not in correct relation with
given input or there is no output at all. In case of simulating
the input/output relation by oracle, the oracle’s output and
program being tested are not similar with a same input.
Forces:

- This relation needs to be the same as the input/output
relation defined in software spec or by the software oracle.

- In some cases software spec may not be available.
- Software oracle may be developed by artificial neural

networks [15].
- Intelligent and search based methods are useful for input

domain reduction [9].
- Early Unit testing could help for early functional error

detection as suggested in extreme programming and some
other lightweight methodologies.

- Some functional errors are because of bad design model.
Solution: The list of functional errors should be created. The
items in this list need to be sorted according to their severity,
priority or customers requests. The Developer is responsible

to fix functional errors due to bad implementation. The test
and debug procedures have to repeated in iteration, until all
functional errors fixed. A possible solution for functional error
reduction at test time is early unit testing. In early testing
developers forced to deliver those modules that pass all unit
tests; so this will help error detection in large and complex
software.
Example: Please refer to ref. [16] for early unit testing
examples in extreme programming methodology.

B2. Pattern: Non-Functional Spec
Context: According to software spec, there may be one or
more non-functional properties that the developed software
should satisfy them. These non-functional properties imply on
the final program and usually the complete and precise test of
them needs a program running in a real and final environment.
The major non-functional properties are those that defined for
safety-critical and real-time software.
Problem: The software failed at one or more non-functional
tests.
Forces:

- Applying the non-functional property to current code is
costly or not possible.

- Non-functional test results strongly depend on a run-time
environment and conditions.

- There is a need of overall software implementation view to
fix non-functional errors.

- There is a limited tool support for automating the non-
functional test and debug process.

Solution: Several transformation processes, such as
normalization, program optimization, restructuring, etc., can
extensively improve the non-functional properties. On the
other hand, each non-functional property could be considered
as an independent software aspect. These aspects are usually
in contradiction. Therefore, system testers may enable or
disable each aspect in a system to inspect overall system non-
functional behavior. Finally, the tester is able to suggest the
best usage of these properties.
Example: When building embedded systems from
components, those components must interoperate, satisfy
various dependencies [17], and meet non-functional
requirements. The VEST toolkit can substantially improve the
development, implementation and evaluation of these systems.
The toolkit focuses on using language independent notions of

Fig. 2 Transformations to pattern form

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

887International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

aspects to deal with non-functional properties, and is geared to
distributed embedded system issues that include application
domain specific code, middleware, the OS, prescriptive
aspects, and the hardware platform [18].

C. White-Box (Code) Patterns
White-box testing (also known as glass-box or clear-box

testing) is a testing methodology that explicitly makes use of
the structure of a program. The goal is to increase the chances
of finding errors in software by effectively increasing the
density of errors. White-box testing schemes investigate
program structures that are more likely to be problematic, and
ensure that the entire program is tested [14, 19]. Some white-
box approaches include dataflow testing, partition testing,
symbolic execution, state-based testing, program slicing, and
mutation testing [5] that most of them are various type of
coverage testing.
C1. Pattern: Compilation
Context: Compilers as a tool, transform a source code
written in a specific programming language, into an
executable machine code. Although this transformation
because of variety errors such as lexical, syntax and semantic
may not be successful. In case of failure, instead of an
executable program, compiler output would be a list of
different compile errors.
Problem: In modern compilers, after an unsuccessful
compilation, the compiler output would be a list of compile-
time errors. Each item in this list has an error id, line number
of occurred error and usually a short description of error.
Forces:

- Because each semantic error contains one or more lexical
or syntax errors it would be hard to determine the correct
source of error.

- Cascadeable errors usually causes incorrect error list.
- Some errors may need to fix by specifying necessary

compile directives.
Solution: Most compilation errors are caused due to an
incorrect use of the programming language. A clear
understanding of syntax and semantic specification of the
target programming language is required.
Example: Consider the following Java statements:
switch ((char) chosen) {
 cas e '1': {
 bw.write("Max Stat:\n + myMax.toString());
 bw.write("\naverage Stat:\n + myavg.toString());
 …

The report in Table 1 is generated by Eclipse platform. It
shows the compilation error and its possible solution
suggested by compiler.

TABLE I
SAMPLE JAVA COMPILER ERROR

Severity Description Resource In Folder Location TimeStamp

2

Syntax error on
tokens, they can
be merge to
form case

MyEightPuzzle.java EightPuzzl
e line 59

September 1,
2005 3:10:12
AM

C2. Pattern: Quality Assurance
Context: Quality Assurance is an ongoing comparison of the
actual quality of a product with its expected quality. In the
field of software development, software metrics are measured
at various points in the development cycle, and utilized to
guide testing and quality improvement efforts [20, 21]. These
metrics are also used by program managers to track the status
of a project; these metrics tend to be related to cost and
schedule, rather than source code [22, 23].
Problem: Software fails on one or more quality assurance
tests. The failure may because of coding standard violation,
model compatibility errors, metric check errors or etc.
Forces:

- Fixing quality assurance violence shall preserve software
behavior.

Solution: By defining a set of code refactorings, a developer
would be able to change code structure in such a way that
satisfies quality assurance tests. These refactoring sets could
be structured in a way that enforces a design pattern of GOF
in code to enhance code maintainability, readability and
structure improvement [24].
Example: Fixing audit violations: Table 2 illustrates sample
audit test error that is detected by Together case tool and its
possible solution [16]. Also in the next section will propose a
sample implementation of this pattern.

TABLE II

SAMPLE QUALITY ASSURANCE ERROR

Problem

Package AirlinerPD;
import java.util.*;
import java.util.ArrayList;
public class Flight {
public void makeReservation(String name, int tKing) {
 …

Rationale
The audit selected above complains that the import
statement is too broad:
import java.util.*;

Solution

We had inserted that import statement into our code so
that the Flight class could have instance variables of type
Date.
import java.util.Date;(replacing import java.util.*;)

C3. Pattern: Coverage Errors
Context: White-box testing is a method to test the internal
structure of the written software. To use this method it would
be necessary to test the source code of the developed software.
The goal of this method is to guarantee that all written
statements of the under-test software has been fully
investigated, so there would be no unexpected behavior due to
untraced branches in code which is named coverage testing.
Either structural coverage criteria can be categorized as
control or data flow based with various demand at different
levels [11].
Problem: After performing a white-box test there are
different coverage errors in control flow or data flow structure

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

888International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

of the software. These errors are categorized based on the
level of coverage test.
Forces:

- Coverage test will uncover faults of superfluous
implementation [25].

- White-box testing could not expose all behavior errors.
- No automation tool is available to debug coverage errors.
- Intelligent and search based methods are useful for code

coverage [9].
Solution: These kinds of errors should be solved manually by
programmers [9]. Reviewing a list of revealed coverage errors
and exploring the code is needed. Then after, the
implementation should be approved to handle uncovered parts
of the code. Please pay attention that this solution depends on
the level of demand that specified in context.
Example: Consider the Java statement presented in Fig. 3.

Fig. 3 Code coverage sample

Regardless of the value of a or b, executing line 1 at least

counts it towards the coverage measurement. If a=10 and b=9,
this test case will cause lines 1-4 to be executed successfully,
yielding 100% coverage. However, further testing with the
case where a = 10 and b = -10, values that will cause line 4 to
fail, will never be considered.

The problem arises in programming languages that uses
short-circuit operators. For example in Java, lines 1-3 will be
executed as long as a > b and b > 0. They will not be executed
if a <= b Therefore, the expression b = -a will never be
invoked, so the tester will never know that the expression
should instead be b != a until values like a = 10 and b = -10

appear [26].
In addition, there are many other kinds of coverage at

different coverage testing levels. Similar examples may
illustrate these techniques.

IV. PATTERN IMPLEMENTATION
In this section, we will propose a sample implementation of

Quality Assurance pattern. To do so, we introduce a search-
based evolutionary method to find the best sequence of valid
high-level design pattern transformations to improve software
reusability while trying to preserve other aspects of software
quality. Our developed framework, Automatic Design
Enhancer (ADE), designed to automate the whole process of
evolving software design via genetic algorithm, consists of
three major subsystems including Transformer engine, Design
Metrics Evaluator engine, and Genetic Algorithm engine. Fig.
4 illustrates the block diagram of this framework.

V. CONCLUSION
A debugging pattern language proposed in this paper,

connects the three concept of test, error, and debug which
provides a catalog of solutions for particular coding error
problems. This language attempts to formalize the debugging
strategies followed by software developers, and maintainers.
However, due to the size of our language that is rather small,
it may be impossible to prove the complitude of the language
at this stage.

 In contrast, it is still easy to extend the language by adding
new patterns to each section. For instance, extension of
coverage pattern to control flow, and data flow patterns is
illustrated in figure 1.

The most important difference among these new patterns
and their parents would be the abstraction level of their
corresponding elements, which cover more specific scopes.
Users of the language can add new patterns according to their
own needs, and they are not obliged to use the current
language.

Fig. 4 Automatic Design Enhancer (ADE) Framework Schema

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

889International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

As an improvement, to step forward to automate debugging
process, it is possible to write the solutions in a pseudo code
format, which makes the implementation of solutions easier,
and helps the user dividing each solution into set of more
simple actions that are easier to implement.
We believe it is possible to build a framework that allows
users to employ debugging patterns in evolving faulty
software by Refactoring, for example, we have propose an
ADE framework to address this issue for Quality Assurance
Pattern. The result of such tools will be a tool for debugging
the errors found during test process and producing more
extensible and reusable software testing/debugging
mechanism.

REFERENCES
[1] Brooks, F.P., Jr., “The Mythical Man-Month: Essays on Software

Engineering,” Anniversary Edition, Reading, MA: Addison-Wesley
Pub., 1995.

[2] Miller, E.F., Jr., “Program testing: guest editor’s introduction,” IEEE
Computer, vol. 11 no. 4, April 1978, pp. 10-12.

[3] Lieberman, H., “The debugging scandal and what to do about it,”
Communications of the ACM, vol. 40 no. 4, April 1997, pp. 26-29.

[4] Eisenstadt, M., “My hairiest bug war stories,” Communications of the
ACM, vol. 40 no. 4, April 1997, pp. 30-37.

[5] Dick S. H., “Computational Intelligence in Software Quality
Assurance,” PhD Thesis, Department of Computer Science and
Engineering, College of Engineering, University of South Florida, 2002.

[6] Grindal, M.; Offutt, J.; Andler, SF., “Combination testing strategies: a
survey,” Software Testing, Verification and Reliability, vol 15 no. 3,
2005, pp. 167–199.

[7] Weyuker, E. J.; Weiss, S. N.; and Hamlet, D., “Comparison of program
testing strategies,” In Proceedings Fourth Symposium on Software
Testing, Analysis, and Verification, ACM Press, Oct. 1991, pp. 1-10.

[8] Tonella, P., “Evolutionary testing of classes,” in Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and
Analysis, Boston, MA, July 2004, pp. 119–128.

[9] McMinn, P., “Search-based software test data generation: A survey,”
Journal of Software Testing, Verification and Reliability, vol. 14 no. 2,
June 2004, pp. 105–156.

[10] Christopher Alexander et al., “A Pattern Language,” Oxford University
Press, New York, 1977.

[11] Coplien, J., “Software Patterns,” SIGS books, 1996.
[12] Christopher Alexander, “The Timeless Way of Building,” Oxford

University Press, New York, 1979.
[13] Friedman, M.A.; Voas, J.M., “Software Assessment: Reliability, Safety,

Testability,” New York: John Wiley & Sons, Inc., 1995.
[14] Peters, J.F.; Pedrycz, W., “Software Engineering: An Engineering

Approach,” New York: John Wiley & Sons, 2000.
[15] Saraph, P.; Kandel, A., “Test Case Generation and Reduction by

Automated Input-Output Analysis,” IEEE, 2003
[16] TogetherSoft, TogetherSoft Home Page,

http://www.borland.com/together/index.html
[17] Gray, J.; Bapty, T.; Neema, S.; and Tuck, J., “Handling Crosscutting

Constraints In Domain Specific,” Modeling, CACM, Vol. 44 no. 10,
2001.

[18] Stankovic, J. A.; Zhu, R.; Poornalingam, R.; Lu, C.; Yu, Z.; Humphrey,
M.; and Ellis, B., “Vest: an aspect-based composition tool for real-time
systems,” in Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, 2003, pp. 58–69.

[19] Duran, J.W.; Wiorkowski, J.J., “Quantifying software validity by
sampling,” IEEE Transactions on Reliability, vol. 29 no. 2, June 1980,
pp. 141-144.

[20] De Almeida, M.A.; Lounis, H.; Melo, W.L., “An investigation on the use
of machine learned models for estimating software correctability,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 9 no. 5, 1999, pp. 565-593.

[21] Ebert, C.; Baisch, E., “Knowledge-based techniques for software quality
management,” in W. Pedrycz, W.; Peters, J.F., Eds., Computational

Intelligence in Software Engineering, River Edge, NJ: World Scientific,
1998, pp. 295-320.

[22] Sedigh-Ali, S.; Ghafoor, A.; Paul, R.A., “Software engineering metrics
for COTS-based systems,” IEEE Computer, vol. 35 no. 5, May 2001, pp.
44-50.

[23] Brown, N., “Industrial-strength management strategies,” IEEE Software,
vol. 13 no. 4, July 1996, pp. 94-103.

[24] Tokuda, L., “Evolving Object-Oriented Designs with Refactorings,”
Ph.D. thesis, University of Texas at Austin, 1999.

[25] McMinn, P., “Improving Evolutionary Testing in the Presence of State
Behavior,” Ph.D thesis, University of Sheffield, 2002.

[26] Agustin, J. M., “Improving software quality through extreme coverage
with JBlanket,” M.S. Thesis CSDL-02-06, Department of Information
and Computer Sciences, University of Hawaii, Honolulu, 2003.

[27] B. Korel, A. M. Al-Yami, “Assertion-oriented automated test data
generation,” In Proceedings of the 18th International Conference on
Software Engineering (ICSE), 1996, pp. 71-80

[28] G. Meszaros, J. Doble, “A Pattern Language for Pattern Writing,”,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

890International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

APPENDIX (PATTERNS QUICK REFERENCE)

Problem Solution Pattern
Name

Behavioral error

• Divide them as functional or
non-functional error.

• Refer to functional spec pattern
in case of functional error

• Refer to non-functional spec
pattern in case of non-
functional error

Behavioral

Structural error

• Refer to compilation pattern in
case of compile error

• Refer to quality assurance
pattern in case of coding rules
violation.

Structural

Functional test error

• Fix all functional errors due to
bad implementation.

• Detect faulty design models
with designer’s assistantship.

• Perform early unit testing for
functional error reduction

Functional
Spec

Non-functional test
error

• Consider each non-functional
property as an independent
software aspect.

• Enable or disable each aspect in
a system to inspect the system
behavior.

• Suggest the best usage of non-
functional properties to
developers.

Non-
Functional
Spec

Compilation error

• Developer is responsible to fix
all compilation errors according
to the each error’s id and its
correspondent line of
occurrence.

Compilation

Quality assurance,
standard or design
violation

• Define a set of refactorings or
use predefined set.

• Refactor code structure in such
a way that satisfies quality
assurance tests according to
refactoring set.

Quality
Assurance

Code coverage error

• These kinds of errors should be
solved manually by
programmers [9].

• Reviewing a list of revealed
coverage errors and exploring
the code is needed.

• Then after, the implementation
should be approved to handle
uncovered parts of the code.

Coverage

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

891International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

87
7.

pd
f

