Search results for: optical properties.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3340

Search results for: optical properties.

3100 Detection of Max. Optical Gain by Erbium Doped Fiber Amplifier

Authors: Abdulamgid.T. Bouzed, Suleiman. M. Elhamali

Abstract:

The technical realization of data transmission using glass fiber began after the development of diode laser in year 1962. The erbium doped fiber amplifiers (EDFA's) in high speed networks allow information to be transmitted over longer distances without using of signal amplification repeaters. These kinds of fibers are doped with erbium atoms which have energy levels in its atomic structure for amplifying light at 1550nm. When a carried signal wave at 1550nm enters the erbium fiber, the light stimulates the excited erbium atoms which pumped with laser beam at 980nm as additional light. The wavelength and intensity of the semiconductor lasers depend on the temperature of active zone and the injection current. The present paper shows the effect of the diode lasers temperature and injection current on the optical amplification. From the results of in- and output power one may calculate the max. optical gain by erbium doped fiber amplifier.

Keywords: Amplifier, erbium doped fiber, gain, lasers, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
3099 Reliability Optimization for 3G Cellular Access Networks

Authors: Ekkaluk Eksook, Chutima Prommak

Abstract:

This paper address the network reliability optimization problem in the optical access network design for the 3G cellular systems. We presents a novel 0-1 integer programming model for designing optical access network topologies comprised of multi-rings with common-edge in order to guarantee always-on services. The results show that the proposed model yields access network topologies with the optimal reliablity and satisfies both network cost limitations and traffic demand requirements.

Keywords: Network Reliability, Topological Network Design, 3G Cellular Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
3098 Red Diode Laser in the Treatment of Epidermal Diseases in PDT

Authors: Farhad H. Mustafa, Mohamad S. Jaafar , Asaad H. Ismail, Ahamad F. Omar, Zahra A. Timimi, Hend A. A. Houssein

Abstract:

The process of laser absorption in the skin during laser irradiation was a critical point in medical application treatments. Delivery the correct amount of laser light is a critical element in photodynamic therapy (PDT). More amounts of laser light able to affect tissues in the skin and small amount not able to enhance PDT procedure in skin. The knowledge of the skin tone laser dependent distribution of 635 nm radiation and its penetration depth in skin is a very important precondition for the investigation of advantage laser induced effect in (PDT) in epidermis diseases (psoriasis). The aim of this work was to estimate an optimum effect of diode laser (635 nm) on the treatment of epidermis diseases in different color skin. Furthermore, it is to improve safety of laser in PDT in epidermis diseases treatment. Advanced system analytical program (ASAP) which is a new approach in investigating the PDT, dependent on optical properties of different skin color was used in present work. A two layered Realistic Skin Model (RSM); stratum corneum and epidermal with red laser (635 nm, 10 mW) were used for irradiative transfer to study fluence and absorbance in different penetration for various human skin colors. Several skin tones very fair, fair, light, medium and dark are used to irradiative transfer. This investigation involved the principles of laser tissue interaction when the skin optically injected by a red laser diode. The results demonstrated that the power characteristic of a laser diode (635 nm) can affect the treatment of epidermal disease in various color skins. Power absorption of the various human skins were recorded and analyzed in order to find the influence of the melanin in PDT treatment in epidermal disease. A two layered RSM show that the change in penetration depth in epidermal layer of the color skin has a larger effect on the distribution of absorbed laser in the skin; this is due to the variation of the melanin concentration for each color.

Keywords: Photodynamic therapy, Realistic skin model, Laser, Light penetration, simulation, Optical properties of skin, Melanin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
3097 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
3096 Optical Repeater Assisted Visible Light Device-to-Device Communications

Authors: Samrat Vikramaditya Tiwari, Atul Sewaiwar, Yeon-Ho Chung

Abstract:

Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m.

Keywords: Visible light communication, light emitting diode, device-to-device, optical repeater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
3095 Fault Localization and Alarm Correlation in Optical WDM Networks

Authors: G. Ramesh, S. Sundara Vadivelu

Abstract:

For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.

Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
3094 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
3093 The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen

Authors: Seyed Abbas Tabatabaei, Alireza Kiasat, Ferdows Karimi Alkouhi

Abstract:

In order to use bitumen in hot mix asphalt, it must have specific characteristics. There are some methods to reach these properties. Using polymer modifiers are one of the methods to modify the bitumen properties. In this paper the effect of Styrene- Butadiene-Rubber that is one of the bitumen polymer modifiers on rheology properties of bitumen is studied. In this regard, the rheological properties of base bitumen and the modified bitumen with 3, 4, and 5 percent of Styrene-Butadiene-Rubber (SBR) were analysed. The results show that bitumen modified with 5 percent of SBR has the best performance than the other samples.

Keywords: Bitumen, polymer modifier, styrene-butadienerubber, rheological properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4395
3092 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

Multiple User Interference (MUI) considers the primary problem in Optical Code-Division Multiple Access (OCDMA), which resulting from the overlapping among the users. In this article we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: Multiple User Interference (MUI), Optical Code-Division Multiple Access (OCDMA), Partial Modified Prime Code (PMP), Spectral Amplitude Coding (SAC), Successive Interference Cancellation (SIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
3091 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application

Authors: Hailu Dessalegn, T. Srinivas

Abstract:

We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/

Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
3090 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
3089 Further Investigation of Elastic Scattering of 16O on 12C at Different Energies

Authors: Sh. Hamada, N. Burtebayev, N. Amangeldi, A. Amar

Abstract:

The aim of this work is to study the elastic transfer phenomenon which takes place in the elastic scattering of 16O on 12C at energies near the Coulomb barrier. Where, the angular distribution decrease steadily with increasing the scattering angle, then the cross section will increase at backward angles due to the α-transfer process. This reaction was also studied at different energies for tracking the nuclear rainbow phenomenon. The experimental data of the angular distribution at these energies were compared to the calculation predictions. The optical potential codes such as SPIVAL and Distorted Wave Born Approximation (DWUCK5) were used in analysis.

Keywords: Transfer reaction, DWBA, Elastic Scattering, Optical Potential Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
3088 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139
3087 Remarks on Some Properties of Decision Rules

Authors: Songlin Yang, Ying Ge

Abstract:

This paper shows that some properties of the decision rules in the literature do not hold by presenting a counterexample. We give sufficient and necessary conditions under which these properties are valid. These results will be helpful when one tries to choose the right decision rules in the research of rough set theory.

Keywords: set, Decision table, Decision rule, coverage factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
3086 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
3085 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots

Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau

Abstract:

Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.

Keywords: Graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025
3084 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian

Abstract:

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
3083 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor

Authors: S. Manjunatha, M. S. Dharmaprakash

Abstract:

Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.

Keywords: Nanoparticles, XRD, TEM, photoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
3082 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization

Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda

Abstract:

The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.

Keywords: Initiator, bulk polymerization, layered silicates, methyl methacrylate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
3081 Synthesis and Characterization of New Thermotropic Liquid Crystals Derived from 4-Hydroxybenzaldehyde

Authors: Sie-Tiong Ha, Teck-Leong Lee, Yip-Foo Win, Siew-Ling Lee, Guan-Yeow Yeap

Abstract:

A homologous series of aromatic esters, 4-nalkanoyloxybenzylidene- 4--bromoanilines, nABBA, consisting of two 1,4-disubstituted phenyl cores and a Schiff base central linkage was synthesized. All the members can be differed by the number of carbon atoms at terminal alkanoyloxy chain (CnH2n-1COO-, n = 2, 6, 18). The molecular structure of nABBA was confirmed with infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and electron-ionization mass (EI-MS) spectrometry. Mesomorphic properties were studied using differential scanning calorimetry and polarizing optical microscopy.

Keywords: Liquid Crystals, Schiff base, Smectic, Mesomorphic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
3080 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints

Authors: Bintao Wu, Xiangfang Xu, Yugang Miao, Duanfeng Han

Abstract:

Joining of 1mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti, TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.

Keywords: Bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
3079 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

Authors: Barun Raychaudhuri

Abstract:

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Keywords: Hyperion, hyperspectral, Kolkata, water depth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
3078 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
3077 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: Gamma ray irradiation, Hard Ferrite, Magnetic coefficient, Radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
3076 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, coulomb modified Glauber model, halo nucleus, optical limit approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
3075 Human Action Recognition System Based on Silhouette

Authors: S. Maheswari, P. Arockia Jansi Rani

Abstract:

Human action is recognized directly from the video sequences. The objective of this work is to recognize various human actions like run, jump, walk etc. Human action recognition requires some prior knowledge about actions namely, the motion estimation, foreground and background estimation. Region of interest (ROI) is extracted to identify the human in the frame. Then, optical flow technique is used to extract the motion vectors. Using the extracted features similarity measure based classification is done to recognize the action. From experimentations upon the Weizmann database, it is found that the proposed method offers a high accuracy.

Keywords: Background subtraction, human silhouette, optical flow, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
3074 Investigation of the Emulsifying Properties of Bambara Groundnut Flour and Starch

Authors: Ebunoluwa G. Gabriel, Victoria A. Jideani, Daniel I. O. Ikhu-Omoregbe

Abstract:

The current desire in food and industrial emulsification is the use of natural emulsifiers. Bambara groundnut flour (BGNF) and its starch (BGNS) will serve both emulsifying and nutritional purposes if found suitable. This current study was aimed at investigating the emulsifying properties of BGNF/BGNS. BGNS was extracted from the BGNF. Emulsions were prepared using a wide range of flour-oil-water and starch-oil-water composition as generated through the application of Response Surface (D-optimal) design. Prepared emulsions were investigated for stability to creaming/sedimentation (using the kinetic information from turbiscan) and flocculation/coalescence (by monitoring the droplet diameter growth using optical microscope) over 5 days. The most stable emulsions (one BGNF-stabilized and the other BGNS-stabilized) were determined. The optimal emulsifier/oil composition was 9g/39g for BGNF and 5g/30g for BGNS. The two emulsions had only 30% and 50% growth in oil droplet diameter respectively by day 5, compared to over 3000% in the unstable ones. The BGNF-stabilized emulsions were more stable than the BGNS-stabilized ones. Emulsions were successfully stabilized with BGNF and BGNS.

Keywords: Bambara groundnut, coalescence, creaming, emulsification, emulsion, emulsion stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3449
3073 Performance Evaluation of Single-mode and Multimode Fiber in LAN Environment

Authors: Farah Diyana Abdul Rahman, Wajdi Al-Khateeb, Aisha Hassan Abdalla Hashim

Abstract:

Optical networks are high capacity networks that meet the rapidly growing demand for bandwidth in the terrestrial telecommunications industry. This paper studies and evaluates singlemode and multimode fiber transmission by varying the distance. It focuses on their performance in LAN environment. This is achieved by observing the pulse spreading and attenuation in optical spectrum and eye-diagram that are obtained using OptSim simulator. The behaviors of two modes with different distance of data transmission are studied, evaluated and compared.

Keywords: Attenuation, eye diagram, fiber transmissions, multimode fiber, pulse dispersion, OSNR, single-mode fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
3072 Efficient Block Matching Algorithm for Motion Estimation

Authors: Zong Chen

Abstract:

Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.

Keywords: Motion estimation, Block Matching, Optical flow, Three step search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
3071 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková

Abstract:

In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI)  bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.

Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104