Search results for: integrated knowledge networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4462

Search results for: integrated knowledge networks

4222 Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms

Authors: Liping Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Global exponential stability, bidirectional associative memory, fuzzy cellular neural networks, leakage delays, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
4221 The Influences of Marketplace Knowledge, General Product Class Knowledge, and Knowledge in Meat Product with Traceability on Trust in Meat Traceability

Authors: Kawpong Polyorat

Abstract:

Since the outbreak of mad cow disease and bird flu, consumers have become more concerned with meat quality and safety. As a result, meat traceability is adopted as one approach to handle consumers’ concern in this issue. Nevertheless, in Thailand, meat traceability is rarely used as a marketing tool to persuade consumers. As a consequence, the present study attempts to understand consumer trust in the meat traceability system by conducting a study in this country to examine the impact of three types of consumer knowledge on this trust. The study results reveal that out of three types of consumer knowledge, marketplace knowledge was the sole predictor of consumer trust in meat traceability and it has a positive influence. General product class knowledge and knowledge in meat products with traceability, however, did not significantly influence consumer trust. The research results provide several implications and directions for future study.

Keywords: Consumer knowledge, marketing, product knowledge, traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1090
4220 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
4219 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa., Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their requirement elicitation process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: Knowledge Audit, Requirement Elicitation Process, KA Model, Knowledge in Requirement Elicitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
4218 Integrated Education at Jazan University: Budding Hope for Employability

Authors: Jayanthi Rajendran

Abstract:

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

Keywords: Consistent language, employability, phonological awareness, balanced curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
4217 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks

Authors: Z. Shaaban

Abstract:

This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.

Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
4216 Knowledge Management Model for Managing Knowledge among Related Organizations

Authors: Mahboubeh Molaei

Abstract:

Transferring information developed by other peoples is an ordinary event that happens during daily conversations, for example when employees sea each other in the organization, or when they are having lunch together, or attending a meeting, they use to talk about their experience, and discuss about their current projects, and talk about their successes over some specific problems. Despite the potential value of leveraging organizational memory and expertise by using OMS and ER, still small organizations haven-t been able to capitalize on its promised value. Each organization has its internal knowledge management system, in some of organizations the system face the lack of expert people to save their experience in the repository and in another hand on some other organizations there are lots of expert people but the organization doesn-t have the maximum use of their knowledge.

Keywords: Knowledge, knowledge management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
4215 Almost Periodic Solution for an Impulsive Neural Networks with Distributed Delays

Authors: Lili Wang

Abstract:

By using the estimation of the Cauchy matrix of linear impulsive differential equations and Banach fixed point theorem as well as Gronwall-Bellman’s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for an impulsive neural networks with distributed delays. An example is presented to illustrate the feasibility and  effectiveness of the results.

Keywords: Almost periodic solution, Exponential stability, Neural networks, Impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
4214 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: Knowledge management, organizational commitment, loyalty, drilling industry, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
4213 Distributed Frequency Synchronization for Global Synchronization in Wireless Mesh Networks

Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon

Abstract:

In this paper, our focus is to assure a global frequency synchronization in OFDMA-based wireless mesh networks with local information. To acquire the global synchronization in distributed manner, we propose a novel distributed frequency synchronization (DFS) method. DFS is a method that carrier frequencies of distributed nodes converge to a common value by repetitive estimation and averaging step and sharing step. Experimental results show that DFS achieves noteworthy better synchronization success probability than existing schemes in OFDMA-based mesh networks where the estimation error is presented.

Keywords: OFDMA systems, Frequency synchronization, Distributed networks, Multiple groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
4212 Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays

Authors: J.H. Park, S. Lakshmanan, H.Y. Jung, S.M. Lee

Abstract:

This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.

Keywords: BAM neural networks, Probabilistic time-varying delays, Stability criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
4211 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays

Authors: Guang Zhou, Shouming Zhong

Abstract:

In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.

Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
4210 Safety of Industrial Networks

Authors: P. Vazan, P. Tanuska, M. Kebisek, S. Duchovicova

Abstract:

The paper deals with communication standards for control and production system. The authors formulate the requirements for communication security protection. The paper is focused on application protocols of the industrial networks and their basic classification. The typical attacks are analysed and the safety protection, based on requirements for specific industrial network is suggested and defined in this paper.

Keywords: Application protocols, communication standards, industrial networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
4209 Enhancing the e-Government Functionality using Knowledge Management

Authors: Mohammad Al Rawajbeh, Ahmad Haboush

Abstract:

The primary aim of the e-government applications is the fast citizen service and the accomplishment of governmental functions. This paper discusses the knowledge management for egovernment development in the needs and role. The paper focused on analyzing the advantages of using knowledge management by using the existing IT technologies to maximize the government functions efficiency. The proposed new approach of providing government services is based on using Knowledge management as a part of e-government system.

Keywords: E-government, knowledge management, e-service, etools, governmental functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
4208 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Nikos Mastorakis

Abstract:

Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
4207 A Group Based Fuzzy MCDM for Selecting Knowledge Portal System

Authors: Amir Sanayei, Seyed Farid Mousavi, Catherine Asadi Shahmirzadi

Abstract:

Despite of many scholars and practitioners recognize the knowledge management implementation in an organizations but insufficient attention has been paid by researchers to select suitable knowledge portal system (KPS) selection. This study develops a Multi Criteria Decision making model based on the fuzzy VIKOR approach to help organizations in selecting KPS. The suitable portal is the critical influential factors on the success of knowledge management (KM) implementation in an organization.

Keywords: Knowledge management, Knowledge portal system, Fuzzy VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
4206 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
4205 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
4204 M2LGP: Mining Multiple Level Gradual Patterns

Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala

Abstract:

Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.

Keywords: Gradual Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
4203 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays

Authors: Lili Wang, Meng Hu

Abstract:

In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.

Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
4202 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
4201 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: Hybrid fault diagnosis, Dynamic neural networks, Nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
4200 Analysis of Knowledge Management Trend by Bibliometric Approach

Authors: Hsu-Hao Tsai, Jiann-Min Yang

Abstract:

The analysis is mainly concentrating on the knowledge management literatures productivity trend which subjects as “knowledge management" in SSCI database. The purpose what the analysis will propose is to summarize the trend information for knowledge management researchers since core knowledge will be concentrated in core categories. The result indicated that the literature productivity which topic as “knowledge management" is still increasing extremely and will demonstrate the trend by different categories including author, country/territory, institution name, document type, language, publication year, and subject area. Focus on the right categories, you will catch the core research information. This implies that the phenomenon "success breeds success" is more common in higher quality publications.

Keywords: Knowledge Management, SSCI, Bibliometric, Lotka's Law

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
4199 Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

Authors: H. Sadjadian , H.D. Taghirad Member, A. Fatehi

Abstract:

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

Keywords: Forward Kinematics, Neural Networks, Numerical Solution, Parallel Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
4198 An Investigation of Performance versus Security in Cognitive Radio Networks with Supporting Cloud Platforms

Authors: Kurniawan D. Irianto, Demetres D. Kouvatsos

Abstract:

The growth of wireless devices affects the availability of limited frequencies or spectrum bands as it has been known that spectrum bands are a natural resource that cannot be added. Meanwhile, the licensed frequencies are idle most of the time. Cognitive radio is one of the solutions to solve those problems. Cognitive radio is a promising technology that allows the unlicensed users known as secondary users (SUs) to access licensed bands without making interference to licensed users or primary users (PUs). As cloud computing has become popular in recent years, cognitive radio networks (CRNs) can be integrated with cloud platform. One of the important issues in CRNs is security. It becomes a problem since CRNs use radio frequencies as a medium for transmitting and CRNs share the same issues with wireless communication systems. Another critical issue in CRNs is performance. Security has adverse effect to performance and there are trade-offs between them. The goal of this paper is to investigate the performance related to security trade-off in CRNs with supporting cloud platforms. Furthermore, Queuing Network Models with preemptive resume and preemptive repeat identical priority are applied in this project to measure the impact of security to performance in CRNs with or without cloud platform. The generalized exponential (GE) type distribution is used to reflect the bursty inter-arrival and service times at the servers. The results show that the best performance is obtained when security is disabled and cloud platform is enabled.

Keywords: Cloud Platforms, Cognitive Radio Networks, GEtype Distribution, Performance Vs Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
4197 Hubs as Catalysts for Geospatial Communication in Kinship Networks

Authors: Sameer Kumar, Jariah Mohd. Jan

Abstract:

Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.

Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
4196 Using Knowledge Management for Creating Knowledge Society through e-Government Services in Montenegro

Authors: Tamara Djurickovic

Abstract:

The waves of eGovernment are rising very fast through almost all public administration, or at least most of the public administrations around the world, and not only the public administration, but also the entire government and all of their organization as a whole. The government uses information technology, and above all the internet or web network, to facilitate the exchange of services between government agencies and citizens, businesses, employees and other non-governmental agencies. With efficient and transparent information exchange, the information becomes accessible to the society (citizens, business, employees etc.), and as a result of these processes the society itself becomes the information society or knowledge society. This paper discusses the knowledge management for eGovernment development in significance and role. Also, the paper reviews the role of virtual communities as a knowledge management mechanism to support eGovernment in Montenegro. It explores the need for knowledge management in eGovernment, identifies knowledge management technologies, and highlights the challenges for developing countries, such as Montenegro in the implementation of eGovernment. The paper suggests that knowledge management is needed to facilitate information exchange and transaction processing with citizens, as well as to enable creation of knowledge society.

Keywords: information, eGovernment, knowledge management, knowledge society

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
4195 Sub-Image Detection Using Fast Neural Processors and Image Decomposition

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.

Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
4194 A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks

Authors: Ankit Agrawal, Ankush Mittal

Abstract:

A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.

Keywords: Activators, correlation, dynamic time-lagged correlation based method, inhibitors, multi-time delay gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
4193 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: Artificial neural networks, fluorescence, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109