Search results for: flow field.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4398

Search results for: flow field.

4158 CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate

Authors: B. Manshoor, M. Jaat, Amir Khalid

Abstract:

Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-ε, realizable k-ε, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.

Keywords: Flow conditioning, turbulent flow, turbulent modeling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
4157 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor

Authors: Vijay Sodhi, Ajay Bansal

Abstract:

The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.

Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
4156 Low Air Velocity Measurement Characteristics- Variation Due to Flow Regime

Authors: A. Pedišius, V. Janušas, A. Bertašienė

Abstract:

The paper depicts air velocity values, reproduced by laser Doppler anemometer (LDA) and ultrasonic anemometer (UA), relations with calculated ones from flow rate measurements using the gas meter which calibration uncertainty is ± (0.15 – 0.30) %. Investigation had been performed in channel installed in aerodynamical facility used as a part of national standard of air velocity. Relations defined in a research let us confirm the LDA and UA for air velocity reproduction to be the most advantageous measures. The results affirm ultrasonic anemometer to be reliable and favourable instrument for measurement of mean velocity or control of velocity stability in the velocity range of 0.05 m/s – 10 (15) m/s when the LDA used. The main aim of this research is to investigate low velocity regularities, starting from 0.05 m/s, including region of turbulent, laminar and transitional air flows. Theoretical and experimental results and brief analysis of it are given in the paper. Maximum and mean velocity relations for transitional air flow having unique distribution are represented. Transitional flow having distinctive and different from laminar and turbulent flow characteristics experimentally have not yet been analysed.

Keywords: Laser Doppler anemometer, ultrasonic anemometer, air flow velocities, transitional flow regime, measurement, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
4155 Unsteadiness Effects on Variable Thrust Nozzle Performance

Authors: A. M. Tahsini, S. T. Mousavi

Abstract:

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design. 

Keywords: Nozzle, Numerical study, Unsteady, Variable thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
4154 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India

Authors: Avadhesh Yadav, V.K. Bajpai

Abstract:

A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.

Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5196
4153 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds

Authors: Z. Saleh, E. J. Avital, T. Korakianitis

Abstract:

The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.

Keywords: Gas turbine, blade tip leakage flow, transonic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
4152 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow

Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba

Abstract:

Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown, this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.

Keywords: Interface height, liquid-liquid flow, two-fluid model, water cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
4151 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils

Authors: J. Joy, T. H. New, I. H. Ibrahim

Abstract:

A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.

Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
4150 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow

Authors: Vai Kuong Sin

Abstract:

Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.

Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
4149 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
4148 Impact of Personality and Loneliness on Life: Role of Online Flow Experiences

Authors: Asmita Shukla, Soma Parija

Abstract:

The present study examines the mediating effect of online flow experience on the relationship between extraversionintroversion, locus of control and loneliness, and depression and satisfaction with life. The data was obtained using a structured questionnaire prepared by adapting standardized scales available from a sample of 102 engineering students from different technical institutions at Bhubaneswar, India. The results indicate that there is a positive significant relationship between introversion, external locus of control, loneliness, depression and online flow experience, and extraversion, internal locus of control and satisfaction with life. The results also suggest that online flow experience mediates the relationship between the aforementioned variables.

Keywords: Life satisfaction and depression, loneliness, online flow experience, personality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
4147 Effect of Mass Transfer on MHD Mixed Convective Flow along Inclined Porous Plate with Thermodiffusion

Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury

Abstract:

The effect of mass transfer on MHD mixed convective flow along inclined porous plate with thermodiffusion have been analyzed on the basis of boundary layer approximations. The fluid is assumed to be incompressible and dense, and a uniform magnetic field is applied normal to the direction of the flow. A Similarity transformation is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. The behavior of velocity, temperature, concentration, local skin-friction, local Nusselt number and local Sherwood number for different values of parameters have been computed and the results are presented graphically, and analyzed thereafter. The validity of the numerical methodology and the results are questioned by comparing the findings obtained for some specific cases with those available in the literature, and a comparatively good agreement is reached.

Keywords: Mass transfer, inclined porous plate, MHD, mixed convection, thermodiffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
4146 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud

Abstract:

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
4145 Unsteady Flow between Two Concentric Rotating Spheres along with Uniform Transpiration

Authors: O. Mahian, A. B. Rahimi, A. Kianifar, A. Jabari Moghadam

Abstract:

In this study, the numerical solution of unsteady flow between two concentric rotating spheres with suction and blowing at their boundaries is presented. The spheres are rotating about a common axis of rotation while their angular velocities are constant. The Navier-Stokes equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns are presented for various values of the flow parameters including rotational Reynolds number Re , and a blowing/suction Reynolds number Rew . Viscous torques at the inner and the outer spheres are calculated, too. It is seen that increasing the amount of suction and blowing decrease the size of eddies generated in the annulus.

Keywords: Concentric spheres, numerical study, suction andblowing, unsteady flow, viscous torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
4144 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris

Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar

Abstract:

The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.

Keywords: Synergistic impact, optimization, CO2 biofixation, airlift reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
4143 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
4142 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow

Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes

Abstract:

An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of  50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.

Keywords: Finned-tube heat exchangers, radiators, heat transfer correlations, pulsatile flow, computer radiators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
4141 Simulation of 3D Flow using Numerical Model at Open-channel Confluences

Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat

Abstract:

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
4140 Study on Cross-flow Heat Transfer in Fixed Bed

Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang

Abstract:

Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.

Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
4139 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction

Authors: Noor Fadiya Mohd Noor

Abstract:

The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.

Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
4138 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
4137 Effect of Flow Holes on Heat Release Performance of Extruded-type Heat Sink

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5oC by the holes.

Keywords: Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation, Flow Holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
4136 Data Traffic Dynamics and Saturation on a Single Link

Authors: Reginald D. Smith

Abstract:

The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.

Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
4135 Study of Flow Behavior of Aqueous Solution of Rhodamine B in Annular Reactor Using Computational Fluid Dynamics

Authors: Jatinder Kumar, Ajay Bansal

Abstract:

The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the flow behavior. CFD modeling was utilized to predict velocity distribution and average velocity in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting the flow characteristics in annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.

Keywords: Annular reactor, computational fluid dynamics (CFD), hydrodynamics, Rhodamine B

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
4134 Design of the Propelling Nozzles for the Launchers and Satellites

Authors: R. Haoui

Abstract:

The aim of this work is to determine the supersonic nozzle profiles used in propulsion, for the launchers or embarked with the satellites. This design has as a role firstly, to give a important propulsion, i.e. with uniform and parallel flow at exit, secondly to find a short length profiles without modification of the flow in the nozzle. The first elaborate program is used to determine the profile of divergent by using the characteristics method for an axisymmetric flow. The second program is conceived by using the finite volume method to determine and test the profile found connected to a convergent.

Keywords: Characteristic method, nozzles, supersonic flow, propellers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
4133 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed

Authors: Zhao Wang, Hong Yan

Abstract:

In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.

Keywords: Gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
4132 Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery

Authors: Irshad U. Khan, Tanmay Paul, Murali Mohan Seepana

Abstract:

This paper presents a study on synthesizing and characterizing a Copper Oxide Doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by Linear Sweep Voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, leading to improved cell performance.

Keywords: ECSA, electrocatalyst, energy storage, Tafel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92
4131 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters

Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah

Abstract:

This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.

Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
4130 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
4129 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows

Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.

Keywords: Central region, rod bundles, transient void fraction, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694