Search results for: Next Generation Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2959

Search results for: Next Generation Networks

2719 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.

Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2718 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization

Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip

Abstract:

This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
2717 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay

Authors: Zixin Liu, Huawei Yang, Fangwei Chen

Abstract:

This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.

Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
2716 Estimating Reaction Rate Constants with Neural Networks

Authors: Benedek Kovacs, Janos Toth

Abstract:

Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.

Keywords: Neural networks, parameter estimation, linear regression, kinetic models, reaction rate coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
2715 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar

Abstract:

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.

Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
2714 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: Neural networks, pattern learning, security, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
2713 Sparse Networks-Based Speedup Technique for Proteins Betweenness Centrality Computation

Authors: Razvan Bocu, Dr Sabin Tabirca

Abstract:

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents the latest authors- achievements regarding the analysis of the networks of proteins (interactome networks), by computing more efficiently the betweenness centrality measure. The paper introduces the concept of betweenness centrality, and then describes how betweenness computation can help the interactome net- work analysis. Current sequential implementations for the between- ness computation do not perform satisfactory in terms of execution times. The paper-s main contribution is centered towards introducing a speedup technique for the betweenness computation, based on modified shortest path algorithms for sparse graphs. Three optimized generic algorithms for betweenness computation are described and implemented, and their performance tested against real biological data, which is part of the IntAct dataset.

Keywords: Betweenness centrality, interactome networks, protein-protein interactions, sub-communities, sparse networks, speedup tech-nique, IntAct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
2712 Ranking and Unranking Algorithms for k-ary Trees in Gray Code Order

Authors: Fateme Ashari-Ghomi, Najme Khorasani, Abbas Nowzari-Dalini

Abstract:

In this paper, we present two new ranking and unranking algorithms for k-ary trees represented by x-sequences in Gray code order. These algorithms are based on a gray code generation algorithm developed by Ahrabian et al.. In mentioned paper, a recursive backtracking generation algorithm for x-sequences corresponding to k-ary trees in Gray code was presented. This generation algorithm is based on Vajnovszki-s algorithm for generating binary trees in Gray code ordering. Up to our knowledge no ranking and unranking algorithms were given for x-sequences in this ordering. we present ranking and unranking algorithms with O(kn2) time complexity for x-sequences in this Gray code ordering

Keywords: k-ary Tree Generation, Ranking, Unranking, Gray Code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
2711 A Study of Computational Organizational Narrative Generation for Decision Support

Authors: Yeung C.L., Cheung C.F., Wang W.M., Tsui E.

Abstract:

Narratives are invaluable assets of human lives. Due to the distinct features of narratives, they are useful for supporting human reasoning processes. However, many useful narratives become residuals in organizations or human minds nowadays. Researchers have contributed effort to investigate and improve narrative generation processes. This paper attempts to contemplate essential components in narratives and explore a computational approach to acquire and extract knowledge to generate narratives. The methodology and significant benefit for decision support are presented.

Keywords: Decision Support, Knowledge Management, Knowledge-based Systems, Narrative Generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2710 Consideration a Novel Manner for Data Sending Quality in Heterogeneous Radio Networks

Authors: Mohammadreza Amini, Omid Moradtalab, Ebadollah Zohrevandi

Abstract:

In real-time networks a large number of application programs are relying on video data and heterogeneous data transmission techniques. The aim of this research is presenting a method for end-to-end vouch quality service in surface applicationlayer for sending video data in comparison form in wireless heterogeneous networks. This method tries to improve the video sending over the wireless heterogeneous networks with used techniques in surface layer, link and application. The offered method is showing a considerable improvement in quality observing by user. In addition to this, other specifications such as shortage of data load that had require to resending and limited the relation period length to require time for second data sending, help to be used the offered method in the wireless devices that have a limited energy. The presented method and the achieved improvement is simulated and presented in the NS-2 software.

Keywords: Heterogeneous wireless networks, adaptation mechanism, multi-level, Handoff, stop mechanism, graceful degrades, application layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2709 A Review: Comparative Study of Enhanced Hierarchical Clustering Protocols in WSN

Authors: M. Sangeetha, A. Sabari, T. Shanthi Priya

Abstract:

Recent advances in wireless networking technologies introduce several energy aware routing protocols in sensor networks. Such protocols aim to extend the lifetime of network by reducing the energy consumption of nodes. Many researchers are looking for certain challenges that are predominant in the grounds of energy consumption. One such protocol that addresses this energy consumption issue is ‘Cluster based hierarchical routing protocol’. In this paper, we intend to discuss some of the major hierarchical routing protocols adhering towards sensor networks. Furthermore, we examine and compare several aspects and characteristics of few widely explored hierarchical clustering protocols, and its operations in wireless sensor networks (WSN). This paper also presents a discussion on the future research topics and the challenges of hierarchical clustering in WSNs.

Keywords: Clustering, Energy Efficiency, Hierarchical routing, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
2708 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

Authors: Aradhna Pandarum

Abstract:

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
2707 Efficient Solution for a Class of Markov Chain Models of Tandem Queueing Networks

Authors: Chun Wen, Tingzhu Huang

Abstract:

We present a new numerical method for the computation of the steady-state solution of Markov chains. Theoretical analyses show that the proposed method, with a contraction factor α, converges to the one-dimensional null space of singular linear systems of the form Ax = 0. Numerical experiments are used to illustrate the effectiveness of the proposed method, with applications to a class of interesting models in the domain of tandem queueing networks.

Keywords: Markov chains, tandem queueing networks, convergence, effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
2706 Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays

Authors: Qingqing Wang, Shouming Zhong

Abstract:

This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.

Keywords: Neural networks, Globally asymptotic stability , LMI approach, Distributed delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2705 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks

Authors: Faisal Al Yahmadi, Muhammad R. Ahmed

Abstract:

Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.

Keywords: Smart grid network, security, threats, vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
2704 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada

Abstract:

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Keywords: Optical burst switching, OBS, flow rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
2703 Prediction of Bath Temperature Using Neural Networks

Authors: H. Meradi, S. Bouhouche, M. Lahreche

Abstract:

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Keywords: LD converter, bath temperature, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2702 New PTH Moment Stable Criteria of Stochastic Neural Networks

Authors: Zixin Liu, Huawei Yang, Fangwei Chen

Abstract:

In this paper, the issue of pth moment stability of a class of stochastic neural networks with mixed delays is investigated. By establishing two integro-differential inequalities, some new sufficient conditions ensuring pth moment exponential stability are obtained. Compared with some previous publications, our results generalize some earlier works reported in the literature, and remove some strict constraints of time delays and kernel functions. Two numerical examples are presented to illustrate the validity of the main results.

Keywords: Neural networks, stochastic, PTH moment stable, time varying delays, distributed delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2701 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: Generation of electricity, micro-hydraulic turbine, sewage, sewer pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
2700 Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.

Keywords: Cellular neural networks, exponential stability, time varying delays, partitioned matrices, periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2699 Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation

Authors: Abdul Rahman Mohd Kasim, Mohd Ariff Admon, Sharidan Shafie

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.

Keywords: Free Convection, Boundary Layer, CircularCylinder, Viscoelastic Fluid, Heat Generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
2698 Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications

Authors: R. Alageswaran, S. Selvakumar, P. Neelamegam

Abstract:

Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.

Keywords: CSMA, DCF, MACA, TelosB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
2697 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
2696 Finding a Solution, all Solutions, or the Most Probable Solution to a Temporal Interval Algebra Network

Authors: André Trudel, Haiyi Zhang

Abstract:

Over the years, many implementations have been proposed for solving IA networks. These implementations are concerned with finding a solution efficiently. The primary goal of our implementation is simplicity and ease of use. We present an IA network implementation based on finite domain non-binary CSPs, and constraint logic programming. The implementation has a GUI which permits the drawing of arbitrary IA networks. We then show how the implementation can be extended to find all the solutions to an IA network. One application of finding all the solutions, is solving probabilistic IA networks.

Keywords: Constraint logic programming, CSP, logic, temporalreasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
2695 Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Qos by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR) , Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing(LAR1).The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network , Glomosim , routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2694 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks

Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati

Abstract:

In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.

Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
2693 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2692 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators

Authors: Engy A. Mohamed, Yasser G. Hegazy

Abstract:

This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.

Keywords: Comulative distribution function, distributed generation, Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
2691 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
2690 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

Authors: G.Ashwini, A.T.Eswara

Abstract:

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244