Search results for: Network adjustment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2900

Search results for: Network adjustment

2660 Complex Network Approach to International Trade of Fossil Fuel

Authors: Semanur Soyyiğit Kaya, Ercan Eren

Abstract:

Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.

Keywords: Complex network approach, fossil fuel, international trade, network theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
2659 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
2658 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: Addressing, IoT, IPv6, network, nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
2657 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains

Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi

Abstract:

Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.

Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
2656 A New Pattern for Handwritten Persian/Arabic Digit Recognition

Authors: A. Harifi, A. Aghagolzadeh

Abstract:

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Keywords: Pattern recognition, Persian digits, NeuralNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
2655 Learning Block Memories with Metric Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Keywords: Hebbian learning, image recognition, small world, spatial information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
2654 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
2653 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
2652 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna

Abstract:

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
2651 Underwater Wireless Sensor Network Layer Design for Reef Restoration

Authors: T. T. Manikandan, Rajeev Sukumaran

Abstract:

Coral Reefs are very important for the majority of marine ecosystems. But, such vital species are under major threat due to the factors such as ocean acidification, overfishing, and coral bleaching. To conserve the coral reefs, reef restoration activities are carried out across the world. After reef restoration, various parameters have to be monitored in order to ensure the overall effectiveness of the reef restoration. Underwater Wireless Sensor Network (UWSN) based  monitoring is widely adopted for such long monitoring activities. Since monitoring of coral reef restoration activities is time sensitive, the QoS guarantee offered by the network with respect to delay is vital. So this research focuses on the analytical modeling of network layer delay using Stochastic Network Calculus (SNC). The core focus of the proposed model will be on the analysis of stochastic dependencies between the network flow and deriving the stochastic delay bounds for the flows that traverse in tandem in UWSNs. The derived analytical bounds are evaluated for their effectiveness using discrete event simulations.

Keywords: Coral Reef Restoration, SNC, SFA, PMOO, Tandem of Queues, Delay Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424
2650 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.

Keywords: Microgrids, secondary control, multiagent, sampling, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2649 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
2648 Security Engine Management of Router based on Security Policy

Authors: Su Hyung Jo, Ki Young Kim, Sang Ho Lee

Abstract:

Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper relates to a security engine management of router based on a security policy, which is the definition of security function against a network intrusion. This paper explains the security policy and designs the structure of security engine management framework.

Keywords: Policy server, security engine, security management, security policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2647 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: Artificial neural network, EDM, metal removal rate, modeling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
2646 An Atomic-Domains-Based Approach for Attack Graph Generation

Authors: Fangfang Chen, Chunlu Wang, Zhihong Tian, Shuyuan Jin, Tianle Zhang

Abstract:

Attack graph is an integral part of modeling the overview of network security. System administrators use attack graphs to determine how vulnerable their systems are and to determine what security measures to deploy to defend their systems. Previous methods on AGG(attack graphs generation) are aiming at the whole network, which makes the process of AGG complex and non-scalable. In this paper, we propose a new approach which is simple and scalable to AGG by decomposing the whole network into atomic domains. Each atomic domain represents a host with a specific privilege. Then the process for AGG is achieved by communications among all the atomic domains. Our approach simplifies the process of design for the whole network, and can gives the attack graphs including each attack path for each host, and when the network changes we just carry on the operations of corresponding atomic domains which makes the process of AGG scalable.

Keywords: atomic domain, vulnerability, attack graphs, generation, computer security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2645 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment

Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.

Abstract:

Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.

Keywords: Dual-Stack, Malware, Worm, IPv6;IDS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
2644 Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks

Authors: Narendra Singh Yadav, R.P.Yadav

Abstract:

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.

Keywords: AODV, DSDV, MANET, relative performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
2643 An Innovative Wireless Sensor Network Protocol Implementation using a Hybrid FPGA Technology

Authors: Danielle Reichel, Antoine Druilhe, Tuan Dang

Abstract:

Traditional development of wireless sensor network mote is generally based on SoC1 platform. Such method of development faces three main drawbacks: lack of flexibility in terms of development due to low resource and rigid architecture of SoC; low capability of evolution and portability versus performance if specific micro-controller architecture features are used; and the rapid obsolescence of micro-controller comparing to the long lifetime of power plants or any industrial installations. To overcome these drawbacks, we have explored a new approach of development of wireless sensor network mote using a hybrid FPGA technology. The application of such approach is illustrated through the implementation of an innovative wireless sensor network protocol called OCARI.

Keywords: Hybrid FPGA, Embedded system, Mote, flexibility, durability, OCARI protocol, SoC, Wireless Sensor Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
2642 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: Big data analytics, Industry 4.0, SPI threshold setting, surface mount technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
2641 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network

Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.

Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2640 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
2639 Exploring Structure of Mobile Ecosystem: Inter-Industry Network Analysis Approach

Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim

Abstract:

As increasing importance of symbiosis and cooperation among mobile communication industries, the mobile ecosystem has been especially highlighted in academia and practice. The structure of mobile ecosystem is quite complex and the ecological role of actors is important to understand that structure. In this respect, this study aims to explore structure of mobile ecosystem in the case of Korea using inter-industry network analysis. Then, the ecological roles in mobile ecosystem are identified using centrality measures as a result of network analysis: degree of centrality, closeness, and betweenness. The result shows that the manufacturing and service industries are separate. Also, the ecological roles of some actors are identified based on the characteristics of ecological terms: keystone, niche, and dominator. Based on the result of this paper, we expect that the policy makers can formulate the future of mobile industry and healthier mobile ecosystem can be constructed.

Keywords: Mobile ecosystem, structure, ecological roles, network analysis, network index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2638 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
2637 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis

Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.

Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
2636 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network

Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola

Abstract:

Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.

Keywords: Mobile ad-hoc network, selfish nodes, reputation-based techniques, acknowledgment-based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
2635 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2634 Device Discover: A Component for Network Management System using Simple Network Management Protocol

Authors: Garima Gupta, Daya Gupta

Abstract:

Virtually all existing networked system management tools use a Manager/Agent paradigm. That is, distributed agents are deployed on managed devices to collect local information and report it back to some management unit. Even those that use standard protocols such as SNMP fall into this model. Using standard protocol has the advantage of interoperability among devices from different vendors. However, it may not be able to provide customized information that is of interest to satisfy specific management needs. In this dissertation work, different approaches are used to collect information regarding the devices attached to a Local Area Network. An SNMP aware application is being developed that will manage the discovery procedure and will be used as data collector.

Keywords: ICMP Scanner, Network Discovery, NetworkManagement, SNMP Scanner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
2633 Challenges to Enable Quick Start of an Environmental Monitoring with Wireless Sensor Network Technology

Authors: Masaki Ito, Hideyuki Tokuda, Takao Kawamura, Kazunori Sugahara

Abstract:

With the advancement of wireless sensor network technology, its practical utilization is becoming an important challange. This paper overviews my past environmental monitoring project, and discusses the process of starting the monitoring by classifying it into four steps. The steps to start environmental monitoring can be complicated, but not well discussed by researchers of wireless sensor network technology. This paper demonstrates our activity and challenges in each of the four steps to ease the process, and argues future challenges to enable quick start of environmental monitoring.

Keywords: Environmental Monitoring, Wireless Sensor Network, Field Experiment and Research Challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
2632 Trust Enhanced Dynamic Source Routing Protocol for Adhoc Networks

Authors: N. Bhalaji, A. R. Sivaramkrishnan, Sinchan Banerjee, V. Sundar, A. Shanmugam

Abstract:

Nodes in mobile Ad Hoc Network (MANET) do not rely on a central infrastructure but relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes collaborate in routing and forwarding. For individual nodes it might be advantageous not to collaborate, though. In this conceptual paper we propose a new approach based on relationship among the nodes which makes them to cooperate in an Adhoc environment. The trust unit is used to calculate the trust values of each node in the network. The calculated trust values are being used by the relationship estimator to determine the relationship status of nodes. The proposed enhanced protocol was compared with the standard DSR protocol and the results are analyzed using the network simulator-2.

Keywords: Reliable Routing, DSR, Grudger, Adhoc network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
2631 Contention Window Adjustment in IEEE 802.11-Based Industrial Wireless Networks

Authors: Mohsen Maadani, Seyed Ahmad Motamedi

Abstract:

The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. In this paper, an adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.

Keywords: Average Delay, Contention Window, Distributed Coordination Function (DCF), Jitter, Industrial Wireless Network (IWN), Maximum Delay, Reliability, Retry Limit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034