Search results for: Image clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1909

Search results for: Image clustering

1669 Use of Fuzzy Edge Image in Block Truncation Coding for Image Compression

Authors: Amarunnishad T.M., Govindan V.K., Abraham T. Mathew

Abstract:

An image compression method has been developed using fuzzy edge image utilizing the basic Block Truncation Coding (BTC) algorithm. The fuzzy edge image has been validated with classical edge detectors on the basis of the results of the well-known Canny edge detector prior to applying to the proposed method. The bit plane generated by the conventional BTC method is replaced with the fuzzy bit plane generated by the logical OR operation between the fuzzy edge image and the corresponding conventional BTC bit plane. The input image is encoded with the block mean and standard deviation and the fuzzy bit plane. The proposed method has been tested with test images of 8 bits/pixel and size 512×512 and found to be superior with better Peak Signal to Noise Ratio (PSNR) when compared to the conventional BTC, and adaptive bit plane selection BTC (ABTC) methods. The raggedness and jagged appearance, and the ringing artifacts at sharp edges are greatly reduced in reconstructed images by the proposed method with the fuzzy bit plane.

Keywords: Image compression, Edge detection, Ground truth image, Peak signal to noise ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1668 A Normalization-based Robust Watermarking Scheme Using Zernike Moments

Authors: Say Wei Foo, Qi Dong

Abstract:

Digital watermarking has become an important technique for copyright protection but its robustness against attacks remains a major problem. In this paper, we propose a normalizationbased robust image watermarking scheme. In the proposed scheme, original host image is first normalized to a standard form. Zernike transform is then applied to the normalized image to calculate Zernike moments. Dither modulation is adopted to quantize the magnitudes of Zernike moments according to the watermark bit stream. The watermark extracting method is a blind method. Security analysis and false alarm analysis are then performed. The quality degradation of watermarked image caused by the embedded watermark is visually transparent. Experimental results show that the proposed scheme has very high robustness against various image processing operations and geometric attacks.

Keywords: Image watermarking, Image normalization, Zernike moments, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
1667 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network

Authors: M. Saravanan, M. Madheswaran

Abstract:

Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.

Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1666 Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks

Authors: Mehdi Saeidmanesh, Mojtaba Hajimohammadi, Ali Movaghar

Abstract:

In this paper, we propose an energy efficient cluster based communication protocol for wireless sensor network. Our protocol considers both the residual energy of sensor nodes and the distance of each node from the BS when selecting cluster-head. This protocol can successfully prolong the network-s lifetime by 1) reducing the total energy dissipation on the network and 2) evenly distributing energy consumption over all sensor nodes. In this protocol, the nodes with more energy and less distance from the BS are probable to be selected as cluster-head. Simulation results with MATLAB show that proposed protocol could increase the lifetime of network more than 94% for first node die (FND), and more than 6% for the half of the nodes alive (HNA) factor as compared with conventional protocols.

Keywords: Clustering methods, energy efficiency, routing protocol, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1665 Fast Cosine Transform to Increase Speed-up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression

Authors: Mario Mastriani, Juliana Gambini

Abstract:

In this work, we present a comparison between two techniques of image compression. In the first case, the image is divided in blocks which are collected according to zig-zag scan. In the second one, we apply the Fast Cosine Transform to the image, and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the Karhunen-Loève transform is applied to mentioned blocks. On the other hand, we present three new metrics based on eigenvalues for a better comparative evaluation of the techniques. Simulations show that the combined version is the best, with minor Mean Absolute Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to Noise Ratio (PSNR) and better image quality. Finally, new technique was far superior to JPEG and JPEG2000.

Keywords: Fast Cosine Transform, image compression, JPEG, JPEG2000, Karhunen-Loève Transform, zig-zag scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4917
1664 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: Clustering coefficient, preferential attachment, small world, Web community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1663 Continuity Microplating using Image Processing

Authors: Ting-Chao Chen, Yean-Ren Hwang, Jing-Chie Lin

Abstract:

A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Keywords: Electroplating, image guided, image process, light source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
1662 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: Image segmentation, hierarchical analysis, 2-D histogram, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1661 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques

Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han

Abstract:

In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.

Keywords: Image Enhancement, Multiscale Retinex, Image Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
1660 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image

Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati

Abstract:

This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.

Keywords: Connected component, preprocessing manuscript image, projection profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
1659 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric

Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah

Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

Keywords: Image registration, mutual information, image gradients, Image transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
1658 A Content Based Image Watermarking Scheme Resilient to Geometric Attacks

Authors: Latha Parameswaran, K. Anbumani

Abstract:

Multimedia security is an incredibly significant area of concern. The paper aims to discuss a robust image watermarking scheme, which can withstand geometric attacks. The source image is initially moment normalized in order to make it withstand geometric attacks. The moment normalized image is wavelet transformed. The first level wavelet transformed image is segmented into blocks if size 8x8. The product of mean and standard and standard deviation of each block is computed. The second level wavelet transformed image is divided into 8x8 blocks. The product of block mean and the standard deviation are computed. The difference between products in the two levels forms the watermark. The watermark is inserted by modulating the coefficients of the mid frequencies. The modulated image is inverse wavelet transformed and inverse moment normalized to generate the watermarked image. The watermarked image is now ready for transmission. The proposed scheme can be used to validate identification cards and financial instruments. The performance of this scheme has been evaluated using a set of parameters. Experimental results show the effectiveness of this scheme.

Keywords: Image moments, wavelets, content-based watermarking, moment normalization, geometric attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1657 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
1656 Improving Digital Image Edge Detection by Fuzzy Systems

Authors: Begol, Moslem, Maghooli, Keivan

Abstract:

Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).

Keywords: Fuzzy Systems, Edge Detection, Fuzzy edgedetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
1655 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1654 An Adaptive Fuzzy Clustering Approach for the Network Management

Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani

Abstract:

The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1653 An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis

Authors: Alexandra Oliveros, Miguel Sotaquirá

Abstract:

DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression.

Keywords: Contour segmentation, DNA microarrays, edge detection, image processing, segmentation, spot addressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
1652 Modeling Peer-to-Peer Networks with Interest-Based Clusters

Authors: Bertalan Forstner, Dr. Hassan Charaf

Abstract:

In the world of Peer-to-Peer (P2P) networking different protocols have been developed to make the resource sharing or information retrieval more efficient. The SemPeer protocol is a new layer on Gnutella that transforms the connections of the nodes based on semantic information to make information retrieval more efficient. However, this transformation causes high clustering in the network that decreases the number of nodes reached, therefore the probability of finding a document is also decreased. In this paper we describe a mathematical model for the Gnutella and SemPeer protocols that captures clustering-related issues, followed by a proposition to modify the SemPeer protocol to achieve moderate clustering. This modification is a sort of link management for the individual nodes that allows the SemPeer protocol to be more efficient, because the probability of a successful query in the P2P network is reasonably increased. For the validation of the models, we evaluated a series of simulations that supported our results.

Keywords: Peer-to-Peer, model, performance, networkmanagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1651 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Authors: M. Santhalakshmi, P Suganthi

Abstract:

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
1650 No-Reference Image Quality Assessment using Blur and Noise

Authors: Min Goo Choi, Jung Hoon Jung, Jae Wook Jeon

Abstract:

Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.

Keywords: No Reference, Image Quality Assessment, blur, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3883
1649 A Novel Metric for Performance Evaluation of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, non-reference quality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
1648 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.

Keywords: Edge detection, multicore, GPU, openCL, MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1647 Identification of a PWA Model of a Batch Reactor for Model Predictive Control

Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic

Abstract:

The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.

Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
1646 A DCT-Based Secure JPEG Image Authentication Scheme

Authors: Mona F. M. Mursi, Ghazy M.R. Assassa, Hatim A. Aboalsamh, Khaled Alghathbar

Abstract:

The challenge in the case of image authentication is that in many cases images need to be subjected to non malicious operations like compression, so the authentication techniques need to be compression tolerant. In this paper we propose an image authentication system that is tolerant to JPEG lossy compression operations. A scheme for JPEG grey scale images is proposed based on a data embedding method that is based on a secret key and a secret mapping vector in the frequency domain. An encrypted feature vector extracted from the image DCT coefficients, is embedded redundantly, and invisibly in the marked image. On the receiver side, the feature vector from the received image is derived again and compared against the extracted watermark to verify the image authenticity. The proposed scheme is robust against JPEG compression up to a maximum compression of approximately 80%,, but sensitive to malicious attacks such as cutting and pasting.

Keywords: Authentication, DCT, JPEG, Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1645 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function

Authors: S. Anna Durai, E. Anna Saro

Abstract:

Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.

Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
1644 A Similarity Metric for Assessment of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, nonreferencequality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
1643 A Optimal Subclass Detection Method for Credit Scoring

Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina

Abstract:

In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.

Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
1642 A Parallel Quadtree Approach for Image Compression using Wavelets

Authors: Hamed Vahdat Nejad, Hossein Deldari

Abstract:

Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.

Keywords: Image compression, MPI, Parallel computing, Wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1641 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production

Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja

Abstract:

A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.

Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1640 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny

Abstract:

People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.

Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112