Search results for: Global Classifier.
1240 Steganalysis of Data Hiding via Halftoning and Coordinate Projection
Authors: Woong Hee Kim, Ilhwan Park
Abstract:
Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.Keywords: Steganography, steganalysis, digital halftoning, data hiding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021239 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.
Keywords: Energy efficient vehicle, drag force, chassis, powertrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57491238 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link
Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito
Abstract:
Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.
Keywords: Arms control, arms race, global security, GMD, ICBM, missile defense, proliferation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11581237 Contextual Sentiment Analysis with Untrained Annotators
Authors: Lucas A. Silva, Carla R. Aguiar
Abstract:
This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.
Keywords: Contextualized classifier, naïve Bayes, sentiment analysis, untrained annotators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47041236 Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.Keywords: alcohol/ether fuel, Cu-Zn-Al-Zr slurry catalyst, global kinetics, slurry reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55231235 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data
Authors: M. Yilmaz, I. Yilmaz, M. Uysal
Abstract:
The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.
Keywords: Free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9821234 The Future Regulatory Challenges of Liquidity Risk Management
Authors: Petr Teply
Abstract:
Liquidity risk management ranks to key concepts applied in finance. Liquidity is defined as a capacity to obtain funding when needed, while liquidity risk means as a threat to this capacity to generate cash at fair costs. In the paper we present challenges of liquidity risk management resulting from the 2007- 2009 global financial upheaval. We see five main regulatory liquidity risk management issues requiring revision in coming years: liquidity measurement, intra-day and intra-group liquidity management, contingency planning and liquidity buffers, liquidity systems, controls and governance, and finally models testing the viability of business liquidity models.Keywords: liquidity, risk management, regulation, global crisis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26831233 Offline Signature Recognition using Radon Transform
Authors: M.Radmehr, S.M.Anisheh, I.Yousefian
Abstract:
In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.Keywords: Fractal Dimension, Offline Signature Recognition, Radon Transform, Support Vector Machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26041232 An Approach for the Prediction of Cardiovascular Diseases
Authors: Nebi Gedik
Abstract:
Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.
Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801231 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.Keywords: Artificial neural networks, cable, fault location andfault classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531230 Face Localization Using Illumination-dependent Face Model for Visual Speech Recognition
Authors: Robert E. Hursig, Jane X. Zhang
Abstract:
A robust still image face localization algorithm capable of operating in an unconstrained visual environment is proposed. First, construction of a robust skin classifier within a shifted HSV color space is described. Then various filtering operations are performed to better isolate face candidates and mitigate the effect of substantial non-skin regions. Finally, a novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Experimental results show a 90% face detection success rate despite the demands of the visually noisy environment.Keywords: Audio-visual speech recognition, Bhattacharyyacoefficient, face detection,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311229 A New Approaches for Seismic Signals Discrimination
Authors: M. Benbrahim, K. Benjelloun, A. Ibenbrahim, M. Kasmi, E. Ardil
Abstract:
The automatic discrimination of seismic signals is an important practical goal for the earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present new techniques for seismic signals classification: local, regional and global discrimination. These techniques were tested on seismic signals from the data base of the National Geophysical Institute of the Centre National pour la Recherche Scientifique et Technique (Morocco) by using the Moroccan software for seismic signals analysis.
Keywords: Seismic signals, local discrimination, regionaldiscrimination, global discrimination, Moroccan software for seismicsignals analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601228 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities
Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos
Abstract:
This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.Keywords: Requirements analysis, distributed requirements engineering, practical experiences, collaborative support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7071227 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa
Abstract:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851226 New Approaches on Stability Analysis for Neural Networks with Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
Utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to analyze the global asymptotic stability for delayed neural networks (DNNs),a new sufficient criterion ensuring the global stability of DNNs is obtained.The criteria are formulated in terms of a set of linear matrix inequalities,which can be checked efficiently by use of some standard numercial packages.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach , IIA approach , Time-varying delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411225 Improvements in Material Handling: A Case Study of Cement Manufacturing Plant
Authors: A. Pancharya
Abstract:
The globalization of the Indian economy has thrown a great challenge to the Indian industries in respect of productivity, quality, cost, delivery etc. Achieving success• the global market has required fundamental shift in the way business is conducted and has dramatically affected virtually every aspect of process industry. The internal manufacturing process and supporting infrastructure should be such that it can compete successfully in global markets with better flexibility and delivery. The paper deals with a case study of a reputed process industry, some changes in the process has been suggested, which leads to reduction in labor cost and production cost.
Keywords: Indian cement industry, material handling, plant layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48961224 Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction
Authors: Anuj K. Sharma, Amit Sharma, Kulbhushan Agnihotri
Abstract:
In this work, we propose and analyze a model of Phytoplankton-Zooplankton interaction with harvesting considering that some species are exploited commercially for food. Criteria for local stability, instability and global stability are derived and some threshold harvesting levels are explored to maintain the population at an appropriate equilibrium level even if the species are exploited continuously.Further,biological and bionomic equilibria of the system are obtained and an optimal harvesting policy is also analysed using the Pantryagin’s Maximum Principle.Finally analytical findings are also supported by some numerical simulations.
Keywords: Phytoplankton-Zooplankton, Global stability, Bionomic Equilibrium, Pontrying-Maximum Principal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22761223 Anti-periodic Solutions for Cohen-Grossberg Shunting Inhibitory Neural Networks with Delays
Authors: Yongkun Li, Tianwei Zhang, Shufa Bai
Abstract:
By using the method of coincidence degree theory and constructing suitable Lyapunov functional, several sufficient conditions are established for the existence and global exponential stability of anti-periodic solutions for Cohen-Grossberg shunting inhibitory neural networks with delays. An example is given to illustrate our feasible results.
Keywords: Anti-periodic solution, coincidence degree, global exponential stability, Cohen-Grossberg shunting inhibitory cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061222 An Efficient Classification Method for Inverse Synthetic Aperture Radar Images
Authors: Sang-Hong Park
Abstract:
This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.Keywords: Radar, ISAR, radar target classification, radar imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981221 A Global Condition for the Triviality of an Almost Split Quaternionic Structure on Split Complex Manifolds
Authors: Erhan Ata, Yusuf Yaylı
Abstract:
Let M be an almost split quaternionic manifold on which its almost split quaternionic structure is defined by a three dimensional subbundle V of ( T M) T (M) * Ôèù and {F,G,H} be a local basis for V . Suppose that the (global) (1, 2) tensor field defined[V ,V ]is defined by [V,V ] = [F,F]+[G,G] + [H,H], where [,] denotes the Nijenhuis bracket. In ref. [7], for the almost split-hypercomplex structureH = J α,α =1,2,3, and the Obata connection ÔêçH vanishes if and only if H is split-hypercomplex. In this study, we give a prof, in particular, prove that if either M is a split quaternionic Kaehler manifold, or if M is a splitcomplex manifold with almost split-complex structure F , then the vanishing [V ,V ] is equivalent to that of all the Nijenhuis brackets of {F,G,H}. It follows that the bundle V is trivial if and only if [V ,V ] = 0 .Keywords: Almost split - hypercomplex structure, Almost split quaternionic structure, Almost split quaternion Kaehler manifold, Obata connection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151220 Face Detection using Gabor Wavelets and Neural Networks
Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani
Abstract:
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21671219 The Global Crisis, Remittance Transfers, and Livelihoods of the Poor
Authors: Craig Loschmann
Abstract:
With the global financial crisis turning into what more and more appears to be a prolonged “Great Recession", we are witnessing marked reductions in remittance transfers to developing countries with the likely possibility that overall flows will decline even further in the near future. With countless families reliant on remittance inflows as a source of income maintaining their economic livelihood, a reduction would put many at risk of falling below or deeper into poverty. Recognizing the importance of remittance inflows as a lifeline to the poor, policy should aim to (1) reduce the barriers to remit in both sending and receiving nations thus easing the decline in transfers; (2) leverage the development impacts of remittances; and (3) buffer vulnerable groups dependent on remittance transfers as a source of livelihood through sound countercyclical macroeconomic policies.Keywords: crisis, migration, remittance, livelihood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17061218 Improving Academic Performance Prediction using Voting Technique in Data Mining
Authors: Ikmal Hisyam Mohamad Paris, Lilly Suriani Affendey, Norwati Mustapha
Abstract:
In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.Keywords: Classification, Data Mining, Prediction, Combination of Multiple Classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27601217 Trade Policy and Economic Growth of Turkey in Global Economy: New Empirical Evidences
Authors: Pınar Yardımcı
Abstract:
This paper tries to answer to the questions whether or not trade openness causes economic growth and trade policy changes are good for Turkey as a developing country in global economy before and after 1980. We employ Johansen co-integration and Granger causality tests with error correction modeling based on vector autoregressive. Using WDI data from the pre-1980 and the post-1980, we find that trade openness and economic growth are cointegrated in the second term only. Also the results suggest a lack of long-run causality between our two variables. These findings may imply that trade policy of Turkey should concentrate more on extra complementary economic reforms.Keywords: Globalization, Trade Policy, Economic Growth, Openness, Co-integration, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551216 A New Face Recognition Method using PCA, LDA and Neural Network
Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani
Abstract:
In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32191215 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131214 Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321213 Properties of a Stochastic Predator-Prey System with Holling II Functional Response
Authors: Xianqing Liu, Shouming Zhong, Fuli Zhong, Zijian Liu
Abstract:
In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.
Keywords: stochastically bounded, global stability, Holling II functional response, white noise, Markovian switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15861212 Printed Arabic Sub-Word Recognition Using Moments
Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh
Abstract:
the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671211 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Yaping Ren, Yongkun Li
Abstract:
In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.
Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598