Search results for: Distributed Artificial Intelligence
1668 Optimal DG Allocation in Distribution Network
Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei
Abstract:
This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27061667 GA based Optimal Sizing and Placement of Distributed Generation for Loss Minimization
Authors: Deependra Singh, Devender Singh, K. S. Verma
Abstract:
This paper addresses a novel technique for placement of distributed generation (DG) in electric power systems. A GA based approach for sizing and placement of DG keeping in view of system power loss minimization in different loading conditions is explained. Minimal system power loss is obtained under voltage and line loading constraints. Proposed strategy is applied to power distribution systems and its effectiveness is verified through simulation results on 16, 37-bus and 75-bus test systems.
Keywords: Distributed generation (DG), Genetic algorithms (GA), optimal sizing and placement, Power loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34691666 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
Authors: Il Young Song, Du Yong Kim, Vladimir Shin
Abstract:
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12001665 Adaptive Block State Update Method for Separating Background
Authors: Youngsuck Ji, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.Keywords: Block-state, Edge component, Reference backgroundi, Artificial illumination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13221664 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.
Keywords: Treadmill exercise, fluid intelligence, raven progressive matrices test, %ERD of upper Alpha band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24451663 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal
Authors: Rajoo Pandey
Abstract:
The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571662 Maximizing the Efficiency of Knowledge Management Systems
Authors: Tori R. Dodla, Laura A. Jones
Abstract:
The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated 11 best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, identifying case studies, implementing the KMS, and promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency.
Keywords: Artificial intelligence, knowledge management efficiency, knowledge management systems, organizational performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5811661 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.
Keywords: Differential assisted steering, control strategy, distributed drive electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22641660 A Business Intelligence System Design Based on ASP Platform
Authors: Fengchi Shen, Rongtao Ding
Abstract:
The Informational Infrastructures of small and medium-sized manufacturing enterprises are relatively poor, there are serious shortages of capitals which can be invested in informatization construction, computer hardware and software resources, and human resources. To address the informatization issue in small and medium-sized manufacturing enterprises, and enable them to the application of advanced management thinking and enhance their competitiveness, the paper establish a manufacturing-oriented small and medium-sized enterprises informatization platform based on the ASP business intelligence technology, which effectively improves the scientificity of enterprises decision and management informatization.
Keywords: ASP, business intelligence, data warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061659 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9141658 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13871657 OSGi in Cloud Environments
Authors: Irina Astrova, Arne Koschel, Björn Siekmann, Mark Starrach, Christopher Tebbe, StefanWolf, Marc Schaaf
Abstract:
This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.Keywords: Cloud computing, OSGi, distributed environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25141656 Increase Energy Savings with Lighting Automation Using Light Pipes and Power LEDs
Abstract:
Using of natural lighting has come into prominence in constructed buildings, especially in last ten years, under scope of energy efficiency. Natural lighting methods are one of the methods that aim to take advantage of day light in maximum level and decrease using of artificial lighting. Increasing of day light amount in buildings by using suitable methods will give optimum result in terms of comfort and energy saving when the daylight-artificial light integration is ensured with a suitable control system. Using of natural light in places that require lighting will ensure energy saving in great extent. With this study, it is aimed to save energy used for purpose of lighting. Under this scope, lighting of a scanning laboratory of a hospital was realized by using a lighting automation containing natural and artificial lighting. In natural lighting, light pipes were used and in artificial lighting, dimmable power LED modules were used. Necessity of lighting was followed with motion sensors. The lighting automation containing natural and artificial light was ensured with fuzzy logic control. At the scanning laboratory where this application was realized, energy saving in lighting was obtained.
Keywords: Daylight transfer, fuzzy logic controller, light pipe, Power LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21551655 A Genetic-Algorithm-Based Approach for Audio Steganography
Authors: Mazdak Zamani , Azizah A. Manaf , Rabiah B. Ahmad , Akram M. Zeki , Shahidan Abdullah
Abstract:
In this paper, we present a novel, principled approach to resolve the remained problems of substitution technique of audio steganography. Using the proposed genetic algorithm, message bits are embedded into multiple, vague and higher LSB layers, resulting in increased robustness. The robustness specially would be increased against those intentional attacks which try to reveal the hidden message and also some unintentional attacks like noise addition as well.
Keywords: Artificial Intelligence, Audio Steganography, DataHiding, Genetic Algorithm, Substitution Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31181654 PTH Moment Exponential Stability of Stochastic Recurrent Neural Networks with Distributed Delays
Authors: Zixin Liu, Jianjun Jiao Wanping Bai
Abstract:
In this paper, the issue of pth moment exponential stability of stochastic recurrent neural network with distributed time delays is investigated. By using the method of variation parameters, inequality techniques, and stochastic analysis, some sufficient conditions ensuring pth moment exponential stability are obtained. The method used in this paper does not resort to any Lyapunov function, and the results derived in this paper generalize some earlier criteria reported in the literature. One numerical example is given to illustrate the main results.
Keywords: Stochastic recurrent neural networks, pth moment exponential stability, distributed time delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581653 Distributed Detection and Optimal Traffic-blocking of Network Worms
Authors: Zoran Nikoloski, Narsingh Deo, Ludek Kucera
Abstract:
Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.Keywords: Network worms, distributed detection, optimaltraffic-blocking, individual-based simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14391652 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review
Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan
Abstract:
Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.
Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23571651 Ambient Intelligence in the Production and Retail Sector: Emerging Opportunities and Potential Pitfalls
Authors: Carsten Röcker
Abstract:
This paper provides an introduction into the evolution of information and communication technology and illustrates its usage in the work domain. The paper is sub-divided into two parts. The first part gives an overview over the different phases of information processing in the work domain. It starts by charting the past and present usage of computers in work environments and shows current technological trends, which are likely to influence future business applications. The second part starts by briefly describing, how the usage of computers changed business processes in the past, and presents first Ambient Intelligence applications based on identification and localization information, which are already used in the production and retail sector. Based on current systems and prototype applications, the paper gives an outlook of how Ambient Intelligence technologies could change business processes in the future.Keywords: Ambient Intelligence, Ubiquitous Computing, Business Applications, Radio Frequency Identification (RFID)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641650 A Comparative Performance Evaluation Model of Mobile Agent Versus Remote Method Invocation for Information Retrieval
Authors: Yousry El-Gamal, Khalid El-Gazzar, Magdy Saeb
Abstract:
The development of distributed systems has been affected by the need to accommodate an increasing degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an alternative to build a smart generation of highly distributed systems. In this work, we investigate the performance aspect of agent-based technologies for information retrieval. We present a comparative performance evaluation model of Mobile Agents versus Remote Method Invocation by means of an analytical approach. We demonstrate the effectiveness of mobile agents for dynamic code deployment and remote data processing by reducing total latency and at the same time producing minimum network traffic. We argue that exploiting agent-based technologies significantly enhances the performance of distributed systems in the domain of information retrieval.Keywords: Mobile Agent, performance evaluation, RMI, information retrieval, distributed systems, database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22531649 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network
Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun
Abstract:
Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411648 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Yaping Ren, Yongkun Li
Abstract:
In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.
Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961647 A Distributed Weighted Cluster Based Routing Protocol for Manets
Authors: Naveen Chauhan, L.K. Awasthi, Narottam chand, Vivek Katiyar, Ankit Chug
Abstract:
Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).Keywords: MANETs, Clustering, Routing, WirelessCommunication, Distributed Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931646 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091645 Accelerating Side Channel Analysis with Distributed and Parallelized Processing
Authors: Kyunghee Oh, Dooho Choi
Abstract:
Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.
Keywords: DPA, distributed computing, parallelized processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061644 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551643 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained.
Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391642 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method
Authors: Vahid Zeighami, Mohsen Ghasemi, Reza Akbari
Abstract:
In this work, a Multi-Level Artificial Bee Colony (called MLABC) for optimizing numerical test functions is presented. In MLABC, two species are used. The first species employs n colonies where each of them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information. The proposed algorithm is tested on a set of well-known test functions. The results show that MLABC algorithm provides efficiency and robustness to solve numerical functions.
Keywords: Artificial bee colony, cooperative artificial bee colony, multilevel cooperation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23631641 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441640 A Query Optimization Strategy for Autonomous Distributed Database Systems
Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam
Abstract:
Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.
Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581639 Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders
Authors: Azeem Ahmad, Magnus Goransson, Aamir Shahzad
Abstract:
The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.Keywords: Requirements Prioritization, GeographicallyDistributed Stakeholders, AHP, Modified AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866