Search results for: Information Security Awareness
2435 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31632434 Memorabilia of Suan Sunandha through Interactive User Interface
Authors: Nalinee Sophatsathit
Abstract:
The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.
Keywords: Interactive user navigation, high-functionality context, situational context, human-computer interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15992433 Changing Patterns of Colorectal Cancer in Hail Region
Authors: Laila Salah Seada, Ashraf Ibrahim, Fawaz Al Rashid, Ihab Abdo, Hassan Kasim, Waleed Al Mansi, Saud Al Shabli
Abstract:
Background and Objectives: Colorectal carcinoma is increasing among both men and women worldwide. It has a multifactorial etiology including genetic factors, environmental factors and inflammatory conditions of the digestive tract. A clinicopathologic assessment of colorectal carcinoma in Hail region is done, considering any changing patterns in two 5-year periods from 2005-2009 (A) and from 2012 to 2017 (B). All data had been retrieved from histopathology files of King Khalid Hospital, Hail. Results: During period (A), 75 cases were diagnosed as colorectal carcinoma. Male patients comprised 56/75 (74.7%) of the study, with a mean age of 58.4 (36-97), while females were 19/75 (25.3%) with a mean age of 50.3(30-85) and the difference was significant (p = 0.05). M:F ratio was 2.9:1. Most common histological type was adenocarcioma in 68/75 (90.7%) patients mostly well differentiated in 44/68 (64.7%). Mucinous neoplasms comprised only 7/75 (9.3%) of cases and tended to have a higher stage (p = 0.04). During period (B), 115 cases were diagnosed with an increase of 53.3% in number of cases than period (A). Male to female ratio also decreased to 1.35:1, females being 44.83% more affected. Adenocarcinoma remained the prevalent type (93.9%), while mucinous type was still rare (5.2%). No distal metastases found at time of presentation. Localization of tumors was rectosigmoid in group (A) in 41.4%, which increased to 56.6% in group (B), with an increase of 15.2%. Iliocecal location also decreased from 8% to 3.5%, being 56.25% less. Other proximal areas of the colon were decreased by 25.75%, from 53.9% in group (A) to 40% in group (B). Conclusion: Colorectal carcinoma in Hail region has increased by 53.3% in the past 5 years, with more females being diagnosed. Localization has also shifted distally by 15.2%. These findings are different from Western world patterns which experienced a decrease in incidence and proximal shift of the colon cancer localization. This might be due to better diagnostic tools, population awareness of the disease, as well as changing of life style and/or food habits in the region.
Keywords: Colorectal cancer, Hail Region, changing pattern, distal shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9432432 On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept
Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani
Abstract:
Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.Keywords: Aerosol Nano-Particle, CFD, Electrical Mobility Spectrometer, Von Neumann entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18592431 Methodology for Bioenergy Potential and Assessment for Energy Deployment in Rural Vhembe District Areas
Authors: Clement M. Matasane, Mohamed T. Kahn
Abstract:
Biomass resources such as animal waste, agricultural and acro-industrial residues, forestry and woodland waste, and industrial and municipal solid wastes provide alternative means to utilize its untapped potential for biomass/biofuel renewable energy systems. In addition, crop residues (i.e., grain, starch, and energy crops) are commonly available in the district and play an essential role in community farming activities. The remote sensing technology (mappings) and geographic information systems tool will be used to determine the biomass potential in the Vhembe District Municipality. The detailed assessment, estimation, and modeling in quantifying their distribution, abundance, and quality yield an effective and efficient use of their potential. This paper aims to examine the potential and prospects of deploying bioenergy systems in small or micro-systems in the district for community use and applications. This deployment of the biofuels/biomass systems will help communities for sustainable energy supply from their traditional energy use into innovative and suitable methods that improve their livelihood. The study demonstrates the potential applications of Geographical Information Systems (GIS) in spatial mapping analysis, evaluation, modeling, and decision support for easy access to renewable energy systems.
Keywords: Agricultural crops, waste materials, biomass potentials, bioenergy potentials, GIS mappings, environmental data, renewable energy deployment, sustainable energy supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3362430 The Relations among Business Model, Higher Education, University and Entrepreneurship Education: An Analysis of Academic Literature of 2009-2019 Period
Authors: Elzo Alves Aranha, Marcio M. Araki
Abstract:
Business model (BM) is a term that has been receiving the attention of scholars and practitioners and has been consolidating itself as a field of study and research. Although there is no agreement in the academic literature on the definition of BM, at least there is an explicit agreement: BM defines a logical structure of how an organization creates value, capture value and delivers value for the customers and stakeholders. The lack of understanding about connections and elements among BM and higher education, university, and entrepreneurship education opens a gap in the academic literature. Thus, it is interesting to analyze how BM has been approached by the literature and applied in higher education, university, and entrepreneurship education aimed to know the main streams of research. This is because higher education institutions are characterized by innovation, leading to a greater acceptance of new and modern concepts such as BM. Our research has the main motivation to fill the gap in the academic literature, making it possible to increase the power of understanding about connections and aspects among BM and higher education, university, and entrepreneurship education. The objective of the research is to analyze the main aspects among BM and higher education, university, and entrepreneurship education in academic literature. The research followed the systematic literature review (SLR). The SLR is based on three main factors: clarity, validity, and auditability. 82 academic papers were found in the past 10 years, from 2009-2019. The search was carried out in Science Direct and Periodicos Capes databases. The main findings indicate that there are links between BM and higher education, BM and university, BM, and entrepreneurship education. The main findings are inserted within seven aspects. The findings are innovative and contribute to increase the power of understanding about the connection among BM and higher education, university, and entrepreneurship education in academic literature. The research findings addressed to the gap exposed in academic literature. The research findings have several practical implications, and we highlight only two main ones. First, researchers will be able to use the research findings to mitigate a BM research agenda involving connections between BM and higher education, BM and university, and BM and entrepreneurship education. Second, directors, deans, and university leaders will be able to carry out BM awareness programs, BM professors training programs, and makers planning for the inclusion of BM, as one of the components of the curricula of the undergraduate and graduate courses.
Keywords: Business model, entrepreneurship education, higher education, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7162429 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5942428 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27762427 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872426 Enabling Factors towards Safety Improvement for Industrialised Building System (IBS)
Authors: Nasyairi Mat Nasir, Zulhabri Ismail, Faridah Ismail, Sharifah Nur Aina Syed Alwee, Masnizan Che Mat
Abstract:
The utilisation of Industrial Building System (IBS) in construction industry will lead to a safe site condition since minimum numbers of workers are required to be on-site, timely material delivery, systematic component storage, reduction of construction material and waste. These matters are being promoted in the Construction Industry Master Plan (CIMP 2006-2015). However, the enabling factors of IBS that will foster a safer working environment are indefinite; on that basis a research has been conducted. The purpose of this paper is to discuss and identify the relevant factors towards safety improvement for IBS. A quantitative research by way of questionnaire surveys have been conducted to 314 construction companies. The target group was Grade 5 to Grade 7 contractors registered with Construction Industry Development Board (CIDB) which specialise in IBS. The findings disclosed seven factors linked to the safety improvement of IBS construction site in Malaysia. The factors were historical, economic, psychological, technical, procedural, organisational and the environmental factors. From the findings, a psychological factor ranked as the highest and most crucial factor contributing to safer IBS construction site. The psychological factor included the self-awareness and influences from workmates behaviour. Followed by organisational factors, where project management style will encourage the safety efforts. From the procedural factors, it was also found that training was one of the significant factors to improve safety culture of IBS construction site. Another important finding that formed as a part of the environmental factor was storage of IBS components, in which proper planning of the layout would able to contribute to a safer site condition. To conclude, in order to improve safety of IBS construction site, a welltrained and skilled workers are required for IBS projects, thus proper training is permissible and should be emphasised.
Keywords: Enabling Factors, Industrialised Building System, Safety Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29332425 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18932424 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10742423 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods
Authors: K. M. Ngcobo, S. D. Eyono Obono
Abstract:
Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICTs) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyze the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods, and the following personality and eLearning related theories constructs: Computer self-efficacy, Trust in ICT systems, and Conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICTs for learning about indigenous foods.
Keywords: E-learning, Indigenous Foods, Information and Communication Technologies, Learning Theories, Personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22322422 A Simplified and Effective Algorithm Used to Mine Similar Processes: An Illustrated Example
Authors: Min-Hsun Kuo, Yun-Shiow Chen
Abstract:
The running logs of a process hold valuable information about its executed activity behavior and generated activity logic structure. Theses informative logs can be extracted, analyzed and utilized to improve the efficiencies of the process's execution and conduction. One of the techniques used to accomplish the process improvement is called as process mining. To mine similar processes is such an improvement mission in process mining. Rather than directly mining similar processes using a single comparing coefficient or a complicate fitness function, this paper presents a simplified heuristic process mining algorithm with two similarity comparisons that are able to relatively conform the activity logic sequences (traces) of mining processes with those of a normalized (regularized) one. The relative process conformance is to find which of the mining processes match the required activity sequences and relationships, further for necessary and sufficient applications of the mined processes to process improvements. One similarity presented is defined by the relationships in terms of the number of similar activity sequences existing in different processes; another similarity expresses the degree of the similar (identical) activity sequences among the conforming processes. Since these two similarities are with respect to certain typical behavior (activity sequences) occurred in an entire process, the common problems, such as the inappropriateness of an absolute comparison and the incapability of an intrinsic information elicitation, which are often appeared in other process conforming techniques, can be solved by the relative process comparison presented in this paper. To demonstrate the potentiality of the proposed algorithm, a numerical example is illustrated.Keywords: process mining, process similarity, artificial intelligence, process conformance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14432421 Highlighting Document's Structure
Authors: Sylvie Ratté, Wilfried Njomgue, Pierre-André Ménard
Abstract:
In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).
Keywords: Information retrieval, document structures, symbolic grammars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12272420 Empirical Evidence on Equity Valuation of Thai Firms
Authors: Somchai Supattarakul, Anya Khanthavit
Abstract:
This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.Keywords: Dividend Discount Model, Equity Valuation Model, Residual Income Model, Thai Stock Market
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18902419 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20532418 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities
Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina
Abstract:
Composting is one of the conventional techniques adopted for organic waste management but the practice is very limited in emerging cities despite that most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia by addressing the composting practice, quality of compost and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used and the maturation period ranged from four to 10 weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr6+ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.
Keywords: Composting, emerging city, organic waste management, urban agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10662417 Evolutionary Approach for Automated Discovery of Censored Production Rules
Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh
Abstract:
In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18812416 Low Resolution Face Recognition Using Mixture of Experts
Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17242415 Qualification and Provisioning of xDSL Broadband Lines using a GIS Approach
Authors: Mavroidis Athanasios, Karamitsos Ioannis, Saletti Paola
Abstract:
In this paper is presented a Geographic Information System (GIS) approach in order to qualify and monitor the broadband lines in efficient way. The methodology used for interpolation is the Delaunay Triangular Irregular Network (TIN). This method is applied for a case study in ISP Greece monitoring 120,000 broadband lines.
Keywords: GIS loop qualification, GIS xDSL, LLU TIN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652414 Patient Support Program in Pharmacovigilance: Foster Patient Confidence and Compliance
Authors: Atul Khurana, Rajul Rastogi, Hans-Joachim Gamperl
Abstract:
The pharmaceutical companies are getting more inclined towards patient support programs (PSPs) which assist patients and/or healthcare professionals (HCPs) in more desirable disease management and cost-effective treatment. The utmost objective of these programs is patient care. The PSPs may include financial assistance to patients, medicine compliance programs, access to HCPs via phone or online chat centers, etc. The PSP has a crucial role in terms of customer acquisition and retention strategies. During the conduct of these programs, Marketing Authorisation Holder (MAH) may receive information related to concerned medicinal products, which is usually reported by patients or involved HCPs. This information may include suspected adverse reaction(s) during/after administration of medicinal products. Hence, the MAH should design PSP to comply with regulatory reporting requirements and avoid non-compliance during PV inspection. The emergence of wireless health devices is lowering the burden on patients to manually incorporate safety data, and building a significant option for patients to observe major swings in reference to drug safety. Therefore, to enhance the adoption of these programs, MAH not only needs to aware patients about advantages of the program, but also recognizes the importance of time of patients and commitments made in a constructive manner. It is indispensable that strengthening the public health is considered as the topmost priority in such programs, and the MAH is compliant to Pharmacovigilance (PV) requirements along with regulatory obligations.
Keywords: Drug safety, good pharmacovigilance practice, patient support program, pharmacovigilance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26272413 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens
Authors: R. Tamborrino, F. Rinaudo
Abstract:
Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.Keywords: Digital urban history, census, digitalisation, GIS, modelling, digital humanities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12292412 Emotion Regulation: An Exploratory Cross-Sectional Study on the Change and Grow Therapeutic Model
Authors: Eduardo da Silva, Tânia Caetano, Jessica B. Lopes
Abstract:
Emotion dysregulation has been linked to psychopathology in general and, in particular, to substance abuse and other addiction-related disorders, such as eating disorders, impulsive disorder, and gambling. It has been proposed that a lessening of the difficulties in emotion regulation can have a significant positive impact on the treatment of these disorders. The present study explores the association between the progress in the Change & Grow® therapeutic model (5 stages of treatment), and the decrease in the difficulties related to emotion regulation. The Change & Grow® model has five stages of treatment according to the model’s five principles (Truth, Acceptance, Gratitude, Love and Responsibility) and incorporates different therapeutic approaches such as positive psychology, cognitive and behavioral therapy and third generation therapies. The main objective is to understand the impact of the presented therapeutic model on difficulties in emotion regulation in patients with addiction-related disorders. The exploratory study has a cross-sectional design. Participants were 44 (15 women and 29 men) Portuguese patients in the residential Villa Ramadas International Treatment Centre. The instrument used was the Portuguese version of the Difficulties in Emotion Regulation Scale (DERS), which measures six dimensions of emotion regulation (Strategies, Non-acceptance, Awareness, Impulse, Goals, and Clarity). The mean rank scores for both the DERS total score and the Impulse subscale showed statistically significant differences according to Stage of Treatment/Principles. Furthermore, Stage of Treatment/Principles held a negative correlation with the scores of the Non-acceptance and Impulse subscales, as well as the DERS total score. The results indicate that the Change & Grow® model seems to have an impact in lessening the patient’s difficulties in emotion regulation. The Impulse dimension suffered the greater impact, which supports the well-known relevance of impulse control, or related difficulties, in addiction-related disorders.
Keywords: Addiction, Change & Grow®, emotion regulation, psychopathology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13252411 Interoperable CNC System for Turning Operations
Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case
Abstract:
The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892410 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator
Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel
Abstract:
Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16902409 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems
Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu
Abstract:
Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22892408 Unveiling the Indonesian Identity through Proverbial Expressions: The Relation of Meaning between Authority and Globalization
Authors: Prima Gusti Yanti, Fairul Zabadi
Abstract:
The purpose of the study is to find out relation of moral massage between the authority and globalization in proverb. Proverb is one of the many forms of cultural identity of the Indonesian/Malay people filled with moral values. The values contained within those proverbs are beneficial not only to the society, but also to those who held power amidst on this era of globalization. The method being used is qualitative research through content analysis which is done by describing and uncovering the forms and meanings of proverbs used within Indonesia Minangkabau society. Sources for this study’s data were extracted from a Minangkabau native speaker in the sub district of Tanah Abang, Jakarta. Said sources were retrieved through a series of interviews with the Minangkabau native speaker, whose speech is still adorned with idiomatic expressions. The research findings show that there are 30 existed proverbs or idiomatic expressions in the Minangkabau language often used by its indigenous people. The thirty data contain moral values which are closely interwoven with the matter of power and globalization. Analytical results show that the fourteen moral values contained within proverbs reflect a firm connection between rule and power in globalization; such as: responsible, brave, togetherness and consensus, tolerance, politeness, thorough and meticulous, honest and keeping promise, ingenious and learning, care, self-correction, be fair, alert, arbitrary, self-awareness. Structurally, proverbs possess an unchangeably formal construction; symbolically, proverbs possess meanings that are clearly decided through ethnographic communicative factors along with situational and cultural contexts. Values contained within proverbs may be used as a guide in social management, be it between fellow men, between men and nature, or even between men and their Creator. Therefore, the meanings and values contained within the morals of proverbs could also be utilized as a counsel for those who rule and in charge of power in order to stem the tides of globalization that had already spread into sectoral, territorial and educational continuums.Keywords: Continuum, globalization, identity, proverb, rule-power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19152407 A Preliminary Literature Review of Digital Transformation Case Studies
Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec
Abstract:
While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.
Keywords: Digital strategy, digital technologies, digital transformation, literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68062406 The Role of Online Social Networks in Social Movements: Social Polarization and Violations against Social Unity and Privacy of Individuals in Turkey
Authors: Tolga Yazici
Abstract:
As a matter of the fact that online social networks like Twitter, Facebook and MySpace have experienced an extensive growth in recent years. Social media offers individuals with a tool for communicating and interacting with one another. These social networks enable people to stay in touch with other people and express themselves. This process makes the users of online social networks active creators of content rather than being only consumers of traditional media. That’s why millions of people show strong desire to learn the methods and tools of digital content production and necessary communication skills. However, the booming interest in communication and interaction through online social networks and high level of eagerness to invent and implement the ways to participate in content production raise some privacy and security concerns. This presentation aims to open the assumed revolutionary, democratic and liberating nature of the online social media up for discussion by reviewing some recent political developments in Turkey. Firstly, the role of Internet and online social networks in mobilizing collective movements through social interactions and communications will be questioned. Secondly, some cases from Gezi and Okmeydanı Protests and also December 17-25 period will be presented in order to illustrate misinformation and manipulation in social media and violation of individual privacy through online social networks in order to damage social unity and stability contradictory to democratic nature of online social networking.
Keywords: Online, social media networks, democratic participation, social polarization, privacy of individuals, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855