Search results for: fuzzy data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8157

Search results for: fuzzy data

5727 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: Distance open educational resources, pedagogical alignment, self-correcting exercises, teacher’s involvement, team roles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
5726 Researches on Simulation and Validation of Airborne Enhanced Ground Proximity Warning System

Authors: Ma Shidong, He Yuncheng, Wang Zhong, Yang Guoqing

Abstract:

In this paper, enhanced ground proximity warning simulation and validation system is designed and implemented. First, based on square grid and sub-grid structure, the global digital terrain database is designed and constructed. Terrain data searching is implemented through querying the latitude and longitude bands and separated zones of global terrain database with the current aircraft position. A combination of dynamic scheduling and hierarchical scheduling is adopted to schedule the terrain data, and the terrain data can be read and delete dynamically in the memory. Secondly, according to the scope, distance, approach speed information etc. to the dangerous terrain in front, and using security profiles calculating method, collision threat detection is executed in real-time, and provides caution and warning alarm. According to this scheme, the implementation of the enhanced ground proximity warning simulation system is realized. Simulations are carried out to verify a good real-time in terrain display and alarm trigger, and the results show simulation system is realized correctly, reasonably and stable.

Keywords: enhanced ground proximity warning system, digital terrain, look-ahead terrain alarm, terrain display, simulation and validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
5725 Effective Implementation of Burst SegmentationTechniques in OBS Networks

Authors: A. Abid, F. M. Abbou, H. T. Ewe

Abstract:

Optical Bursts Switching (OBS) is a relatively new optical switching paradigm. Contention and burst loss in OBS networks are major concerns. To resolve contentions, an interesting alternative to discarding the entire data burst is to partially drop the burst. Partial burst dropping is based on burst segmentation concept that its implementation is constrained by some technical challenges, besides the complexity added to the algorithms and protocols on both edge and core nodes. In this paper, the burst segmentation concept is investigated, and an implementation scheme is proposed and evaluated. An appropriate dropping policy that effectively manages the size of the segmented data bursts is presented. The dropping policy is further supported by a new control packet format that provides constant transmission overhead.

Keywords: Burst length, Burst Segmentation, Optical BurstSwitching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
5724 Prediction of Basic Wind Speed for Ayeyarwady

Authors: Chaw Su Mon

Abstract:

Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).

Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
5723 A DEA Model for Performance Evaluation in The Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

Data Envelopment Analysis (DEA) is a methodology that computes efficiency values for decision making units (DMU) in a given period by comparing the outputs with the inputs. In many cases, there are some time lag between the consumption of inputs and the production of outputs. For a long-term research project, it is hard to avoid the production lead time phenomenon. This time lag effect should be considered in evaluating the performance of organizations. This paper suggests a model to calculate efficiency values for the performance evaluation problem with time lag. In the experimental part, the proposed methods are compared with the CCR and an existing time lag model using the data set of the 21st century frontier R&D program which is a long-term national R&D program of Korea.

Keywords: DEA, Efficiency, Time Lag

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
5722 An Estimation of the Performance of HRLS Algorithm

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

The householder RLS (HRLS) algorithm is an O(N2) algorithm which recursively updates an arbitrary square-root of the input data correlation matrix and naturally provides the LS weight vector. A data dependent householder matrix is applied for such an update. In this paper a recursive estimate of the eigenvalue spread and misalignment of the algorithm is presented at a very low computational cost. Misalignment is found to be highly sensitive to the eigenvalue spread of input signals, output noise of the system and exponential window. Simulation results show noticeable degradation in the misalignment by increase in eigenvalue spread as well as system-s output noise, while exponential window was kept constant.

Keywords: HRLS algorithm, eigenvalue spread, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
5721 Podemos Party Origin: From Social Protest to Spanish Parliament

Authors: Víctor Manuel Muñoz-Sánchez, Antonio Manuel Pérez-Flores

Abstract:

This paper analyzes the institutionalization of social protest in Spain. In the current crisis Podemos party seems to represent the political positions of the most affected citizens by the economic situation. It studies using quantitative techniques (statistical bivariate analysis), focusing on the exploitation of several bases of statistics data from the Center for Sociological and Research of Spanish Government, 15M movement characterization to its institutionalization in the Podemos party. Making a comparison between the participant's profile by the 15M and the social bases of Podemos votes. Data on the transformation of the socio-demographic profile of the fans, connoisseurs and 15M participants and voters are given.

Keywords: Collective action, emerging parties, political parties, social protest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
5720 Director Compensation, CEO Duality, State Ownership, and Firm Performance in China: Proof from Panel Data of Publicly Listed Enterprises from 1999 to 2020

Authors: Wanda Luen-Wun Siu, Xiaowen Zhang

Abstract:

This paper offered the primary methodical proof on how director remuneration related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 1999 to 2020 over two decades in the China Stock Market & Accounting Research database, we found statistically significant positive associations between director pay and firm performance in privately owned firms over this period, supporting the agency theory. In contrast, among the state-owned enterprises, there was a reverse relation between director compensation and firm financial performance, contributing to the existing literature. But the results also revealed that state-owned enterprises financially performed as well as private enterprises. Such findings suggested that state ownership might line up officials’ career incentives with party prime concern rather than pecuniary incentives. Also, CEO duality enhanced firm performance. As such, allegiance to the party and possible advancement to an upper-level political position would motivate company directors in state-owned enterprises. On the other hand, directors in privately owned enterprises might be motivated by monetary incentives. In addition, a statistical regression model was proposed and tested to get the results of the performance of state-owned enterprises. Finally, some suggestions were made about how to improve the institutional management of government-owned corporations in China.

Keywords: China’s listed Firm, director compensation, CEO duality, firm performance, panel analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
5719 Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning

Authors: M. Winkens, P. Nyhuis

Abstract:

Components with sensory properties such as gentelligent components developed at the Collaborative Research Centre 653 offer a new angle in terms of the full utilization of the remaining service life as well as preventive maintenance. The developed methodology of component status driven maintenance analyzes the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance required in this case. The procedure is derived from the case-based reasoning method and will be explained in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype.

Keywords: Gentelligent Components, Preventive Maintenance, Case based Reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
5718 A Two-Step Approach for Tree-structured XPath Query Reduction

Authors: Minsoo Lee, Yun-mi Kim, Yoon-kyung Lee

Abstract:

XML data consists of a very flexible tree-structure which makes it difficult to support the storing and retrieving of XML data. The node numbering scheme is one of the most popular approaches to store XML in relational databases. Together with the node numbering storage scheme, structural joins can be used to efficiently process the hierarchical relationships in XML. However, in order to process a tree-structured XPath query containing several hierarchical relationships and conditional sentences on XML data, many structural joins need to be carried out, which results in a high query execution cost. This paper introduces mechanisms to reduce the XPath queries including branch nodes into a much more efficient form with less numbers of structural joins. A two step approach is proposed. The first step merges duplicate nodes in the tree-structured query and the second step divides the query into sub-queries, shortens the paths and then merges the sub-queries back together. The proposed approach can highly contribute to the efficient execution of XML queries. Experimental results show that the proposed scheme can reduce the query execution cost by up to an order of magnitude of the original execution cost.

Keywords: XML, Xpath, tree-structured query, query reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
5717 Optimized Vector Quantization for Bayer Color Filter Array

Authors: M. Lakshmi, J. Senthil Kumar

Abstract:

Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation before compression leads to data redundancy. This paper proposes a new Vector Quantization (VQ) technique to construct a VQ codebook with Differential Evolution (DE) Algorithm. The new technique is compared to conventional Linde- Buzo-Gray (LBG) method.

Keywords: Color Filter Array (CFA), Biorthogonal Wavelet, Vector Quantization (VQ), Differential Evolution (DE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
5716 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –

Authors: Reinhold Decker, Christian Holsing, Sascha Lerke

Abstract:

This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.

Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
5715 Observation and Study of Landslides Affecting the Tangier – Oued R’mel Motorway Segment

Authors: S. Houssaini, L. Bahi

Abstract:

The motorway segment between Tangier and Oued R’mel has experienced, since the beginning of building works, significant instability and landslides linked to a number of geological, hydrogeological and geothermic factors affecting the different formations. The landslides observed are not fully understood, despite many studies conducted on this segment. This study aims at producing new methods to better explain the phenomena behind the landslides, taking into account the geotechnical and geothermic contexts. This analysis builds up on previous studies and geotechnical data collected in the field. The final body of data collected shall be processed through the Plaxis software for a better and customizable view of the landslide problems in the area, which will help tofind solutions and stabilize land in the area.

Keywords: Landslides, modeling, risk, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
5714 Enhance Performance of Secure Image Using Wavelet Compression

Authors: Goh Han Keat, Azman Samsudin Zurinahni Zainol

Abstract:

The increase popularity of multimedia application especially in image processing places a great demand on efficient data storage and transmission techniques. Network communication such as wireless network can easily be intercepted and cause of confidential information leaked. Unfortunately, conventional compression and encryption methods are too slow; it is impossible to carry out real time secure image processing. In this research, Embedded Zerotree Wavelet (EZW) encoder which specially designs for wavelet compression is examined. With this algorithm, three methods are proposed to reduce the processing time, space and security protection that will be secured enough to protect the data.

Keywords: Embedded Zerotree Wavelet (EZW), Imagecompression, Wavelet encoder, Entropy encoder, Encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
5713 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: Exponential smoothing method, open data, operation estimation, train schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
5712 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis

Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho

Abstract:

Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.

Keywords: Land use, SNS, text mining, urban regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
5711 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
5710 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: Crime prediction, machine learning, public safety, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
5709 Interrelationships between Physicochemical Water Pollution Indicators: A Case Study of River Pandu

Authors: Sunita Verma , Divya Tiwari, Ajay Verma

Abstract:

Water samples were collected from river Pandu at six stations where human and animal activities were high. Composite samples were analyzed for dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) , pH values during dry and wet seasons as well as the harmattan period. The total data points were used to establish relationships between the parameters and data were also subjected to statistical analysis and expressed as mean ± standard error of mean (SEM) at a level of significance of p<0.05. Regression analysis was carried out to establish relationships if any between studied parameters and relationships in form of scatter plots were obtained between DO/BOD, COD/DO, BOD/COD, COD/pH, BOD/pH and DO/pH. The high to moderate correlation coefficient observed, R2 ranged from 0.68 to 0.15 between these parameters.

Keywords: BOD, DO, COD, pH, Regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
5708 Analyzing Data on Breastfeeding Using Dispersed Statistical Models

Authors: Naushad Mamode Khan, Cheika Jahangeer, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is very important as it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, it helps to reduce the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we make a survey of the factors that influence exclusive breastfeeding and use two dispersed statistical models to analyze data. The models are the Generalized Poisson regression model and the Com-Poisson regression models.

Keywords: Exclusive breastfeeding, regression model, generalized poisson, com-poisson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
5707 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

Authors: Christiana Gauci-Sciberras

Abstract:

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.

Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
5706 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand

Authors: S. Areerachakul

Abstract:

Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).

Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
5705 Face Recognition using a Kernelization of Graph Embedding

Authors: Pang Ying Han, Hiew Fu San, Ooi Shih Yin

Abstract:

Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor.

Keywords: Face recognition, Fisher discriminant, graph embedding, kernelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
5704 Apply Super-SVA to SAR Imaging with Both Aperture Gaps and Bandwidth Gaps

Authors: Wenshuai Zhai, Yunhua Zhang

Abstract:

Synthetic aperture radar (SAR) imaging usually requires echo data collected continuously pulse by pulse with certain bandwidth. However in real situation, data collection or part of signal spectrum can be interrupted due to various reasons, i.e. there will be gaps in spatial spectrum. In this case we need to find ways to fill out the resulted gaps and get image with defined resolution. In this paper we introduce our work on how to apply iterative spatially variant apodization (Super-SVA) technique to extrapolate the spatial spectrum in both azimuthal and range directions so as to fill out the gaps and get correct radar image.

Keywords: SAR imaging, Sparse aperture, Stepped frequencychirp signal, high resolution, Super-SVA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
5703 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, “Transformation of Teaching and Learning the Fun Way”. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get the validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi- structured interviews were also administrated to collect qualitative data on participants’ experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the “The fun way approach” in conducting training program in future.

Keywords: Teaching and Learning, Motivation, Teacher Trainer, SDT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
5702 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore, when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures.

Keywords: Optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
5701 Effect of Temperature on the Performance of Multi-Stage Distillation

Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui

Abstract:

The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
5700 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
5699 Natural Convection Heat Transfer from Inclined Cylinders: A Unified Correlation

Authors: Neetu Rani, Hema Setia, Marut Dutt. R.K. Wanchoo

Abstract:

An empirical correlation for predicting the heat transfer coefficient for a cylinder under free convection, inclined at any arbitrary angle with the horizontal has been developed in terms of Nusselt number, Prandtl number and Grashof number. Available experimental data was used to determine the parameters for the proposed correlation. The proposed correlation predicts the available data well within ±10%, for Prandtl number in the range 0.68-0.72 and Grashof number in the range 1.4×104–1.2×1010.

Keywords: Heat transfer, inclined cylinders, natural convection, Nusselt number, Prandtl number, Grashof number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5953
5698 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression

Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah

Abstract:

An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.

Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915