Search results for: foreign language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2895

Search results for: foreign language learning

465 A Study on Fantasy Images Represented on the Films: Focused on Mise-en-Scène Element

Authors: Somi Nah

Abstract:

The genre of fantasy depicts a world of imagine that triggers popular interest from a created view of world, and a fantasy is defined as a story that illustrates a world of imagine where scientific or horror elements are stand in its center. This study is not focused on the narrative of the fantasy, i.e. not on the adventurous story, but is concentrated on the image of the fantasy to work on its relationship with intended themes and differences among cultures due to meanings of materials. As for films, we have selected some films in the 2000's that are internationally recognized as expressing unique images of fantasy containing the theme of love in them. The selected films are 5 pieces including two European films, Amelie from Montmartre (2001) and The Science of Sleep (2005) and three Asian films, Citizen Dog from Thailand (2004), Memories of Matsuko from Japan (2006), and I'm a Cyborg, but That's OK from Korea (2006). These films share some common characteristics to the effect that they give tiny lessons and feelings for life with expressions of fantasy images as if they were fairy tales for adults and that they lead the audience to reflect on their days and revive forgotten dreams of childhood. We analyze the images of fantasy in each of the films on the basis of the elements of Mise-en-Scène (setting and props, costume, hair and make-up, facial expressions and body language, lighting and color, positioning of characters, and objects within a frame).

Keywords: Mise-en-scène, fantasy images, films, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4964
464 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work

Authors: O. Lasaga

Abstract:

Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.

Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
463 Double Reduction of Ada-ECATNet Representation using Rewriting Logic

Authors: Noura Boudiaf, Allaoua Chaoui

Abstract:

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Keywords: Ada tasking, ECATNets, Algebraic Petri Nets, Compact Representation, Analysis, Rewriting Logic, Maude.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
462 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang

Abstract:

The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: Degree, initial cluster center, k-means, minimum spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
461 Design of Collaborative Web System: Based on Case Study of PBL Support Systems

Authors: Kawai Nobuaki

Abstract:

This paper describes the design and implementation of web system for continuable and viable collaboration. This study proposes the improvement of the system based on a result of a certain practice. As contemporary higher education information environments transform, this study highlights the significance of university identity and college identity that are formed continuously through independent activities of the students. Based on these discussions, the present study proposes a practical media environment design which facilitates the processes of organizational identity formation based on a continuous and cyclical model. Even if users change by this system, the communication system continues operation and cooperation. The activity becomes the archive and produces new activity. Based on the result, this study elaborates a plan with a re-design by a system from the viewpoint of second-order cybernetics. Systems theory is a theoretical foundation for our study.

Keywords: Collaborative work, learning management system, second-order cybernetics, systems theory, user generated contents, viable system model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
460 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186
459 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
458 Vr-GIS and Ar-GIS In Education: A Case Study

Authors: Ilario Gabriele Gerloni, Vincenza Carchiolo, Alessandro Longheu, Ugo Becciani, Eva Sciacca, Fabio Vitello

Abstract:

ICT tools and platforms endorse more and more educational process. Many models and techniques for people to be educated and trained about specific topics and skills do exist, as classroom lectures with textbooks, computers, handheld devices and others. The choice to what extent ICT is applied within learning contexts is related to personal access to technologies as well as to the infrastructure surrounding environment. Among recent techniques, the adoption of Virtual Reality (VR) and Augmented Reality (AR) provides significant impulse in fully engaging users senses. In this paper, an application of AR/VR within Geographic Information Systems (GIS) context is presented. It aims to provide immersive environment experiences for educational and training purposes (e.g. for civil protection personnel), useful especially for situations where real scenarios are not easily accessible by humans. First acknowledgments are promising for building an effective tool that helps civil protection personnel training with risk reduction.

Keywords: Education, virtual reality, augmented reality, civil protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
457 The Design of Picture Books for Children from Tales of Amphawa Fireflies

Authors: Marut Pichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: Children’s illustrated book, Fireflies, Amphawa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
456 Using Weblog to Promote Critical Thinking – An Exploratory Study

Authors: Huay Lit Woo, Qiyun Wang

Abstract:

Weblog is an Internet tool that is believed to possess great potential to facilitate learning in education. This study wants to know if weblog can be used to promote students- critical thinking. It used a group of secondary two students from a Singapore school to write weblogs as a means of substitution for their traditional handwritten assignments. The topics for the weblogging are taken from History syllabus but modified to suit the purpose of this study. Weblogs from the students were collected and analysed using a known coding system for measuring critical thinking. Results show that the topic for blogging is crucial in determining the types of critical thinking employed by the students. Students are seen to display critical thinking traits in the areas of information sourcing, linking information to arguments and viewpoints justification. Students- criticalness is more profound when the information for writing a topic is readily available. Otherwise, they tend to be less critical and subjective. The study also found that students lack the ability to source for external information suggesting that students may need to be taught information literacy in order to widen their use of critical thinking skills.

Keywords: Affordance, blog, critical thinking, perception, weblog.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
455 LMS in Higher Education: Analysis of the Effect of a Critical Factor ‘Faculty Training’

Authors: Pedro Barbosa Cabral, Neuza Pedro, Ana Mafalda Gonçalves

Abstract:

The purpose of this research is the analysis of the impact of ICT-related training in the adoption of a learning management systems (LMS) for teaching practicesby faculties in a higher education institution. Based on comparative analyses the impact will be obtained by the number of LMS courses created and managed by participants in ICT for teaching workshops and those who have not attended to any workshops. Involving near 1320 LMS courses and 265 faculties, the results evidence that(i) faculties who have not attend any workshop present a larger distribution of empty courses and (ii) faculties who have attended three or more workshops managed a higher distribution of courses with a considerable level of use intensity, when compared to the others groups. These findings supportthe idea that faculty training is a crucial factor in the process of LMS integration in higher education institutions and that faculties who have been enrolled in three or more workshops develop a higher level of technical and pedagogical proficiency in LMS.

Keywords: Higher Education, Faculty Training, LMS, Comparative Analyses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
454 Evaluating some Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
453 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: Landslide, limit analysis, ANN, soil properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
452 Deriving Causal Explanation from Qualitative Model Reasoning

Authors: Alicia Y. C. Tang, Sharifuddin M. Zain, Noorsaadah A. Rahman, Rukaini Abdullah

Abstract:

This paper discusses a qualitative simulator QRiOM that uses Qualitative Reasoning (QR) technique, and a process-based ontology to model, simulate and explain the behaviour of selected organic reactions. Learning organic reactions requires the application of domain knowledge at intuitive level, which is difficult to be programmed using traditional approach. The main objective of QRiOM is to help learners gain a better understanding of the fundamental organic reaction concepts, and to improve their conceptual comprehension on the subject by analyzing the multiple forms of explanation generated by the software. This paper focuses on the generation of explanation based on causal theories to explicate various phenomena in the chemistry subject. QRiOM has been tested with three classes problems related to organic chemistry, with encouraging results. This paper also presents the results of preliminary evaluation of QRiOM that reveal its explanation capability and usefulness.

Keywords: Artificial intelligence, explanation, ontology, organicreactions, qualitative reasoning, QPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
451 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction

Authors: Enas M. F. El Houby, Marwa S. Hassan

Abstract:

Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.

Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
450 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures

Authors: Réka Sárközi, Péter Iványi, Attila B. Széll

Abstract:

The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.

Keywords: Parametric design, structural morphology, space structures, spherical coordinate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
449 Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind

Authors: Chantana Insra

Abstract:

The research “Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind” aims to provide original tactile format to institutions for the blind, as supplementary textbooks, to accumulate Buddhist knowledge, so that it could be extracurricular learning. The research studied on 33 students with both total and partial blindness, the latter with the ability to read Braille’s signs, of elementary 4 – 6, who are pursuing their studies on the second semester of the academic year 2013 at Bangkok School for the Blind. The researcher opted samples specifically, studied data acquired from both documents and fieldworks. Those methods must be related to the blind, tactile format production, and Buddha images in mudras representing days of a week. Afterwards, the formats will be analyzed and designed so that there would be 8 format pictures of Buddha images in mudras representing days of the week. Experts will next evaluate the media and try out.

Keywords: Blind, tactile texture, Thai Buddha images in Mudras representing days of the week.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
448 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities

Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud

Abstract:

Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.

Keywords: detection, mammogram, texture classification, dictionary learning, FTCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
447 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools

Authors: Yogesh Aggarwal

Abstract:

The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.

Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
446 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: Road accident, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
445 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, marketing, online marketplace, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
444 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
443 The Effects of Mobile Phones in Mitigating Cultural Shock Amongst Refugees: Case of South Africa

Authors: Sarah Vuningoma, Maria Rosa Lorini, Wallace Chigona

Abstract:

The potential of mobile phones is evident in their ability to address isolation and loneliness, support the improvement of interpersonal relations, and contribute to the facilitation of assimilation processes. Mobile phones can play a role in facilitating the integration of refugees into a new environment. This study aims to evaluate the impact of mobile phone use on helping refugees navigate the challenges posed by cultural differences in the host country. Semi-structured interviews were employed to collect data for the study, involving a sample size of 27 participants. Participants in the study were refugees based in South Africa, and thematic analysis was the chosen method for data analysis. The research highlights the numerous challenges faced by refugees in their host nation, including a lack of local cultural skills, the separation of family and friends from their countries of origin, hurdles in acquiring legal documentation, and the complexities of assimilating into the unfamiliar community. The use of mobile phones by refugees comes with several advantages, such as the advancement of language and cultural understanding, seamless integration into the host country, streamlined communication, and the exploration of diverse opportunities. Concurrently, mobile phones allow refugees in South Africa to manage the impact of culture shock.

Keywords: Mobile phones, culture shock, refugees, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213
442 Redefining “Infrastructure as Code” Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: Artificial intelligence, AI, infrastructure as code, IaC, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36
441 A Review of Critical Success Factor in Building Maintenance Management Practice for University Sector

Authors: S.H. Zulkarnain, E.M.A Zawawi, M.Y. A. Rahman, N.K.F. Mustafa

Abstract:

Building maintenance plays an important role among other activities in building operation. Building defect and damages are part of the building maintenance 'bread and butter' as their input indicated in the building inspection is very much justified, particularly as to determine the building performance. There will be no escape route or short cut from building maintenance work. This study attempts to identify a competitive performance that translates the Critical Success Factor achievements and satisfactorily meet the university-s expectation. The quality and efficiency of maintenance management operation of building depends, to some extent, on the building condition information, the expectation from the university sector and the works carried out for each maintenance activity. This paper reviews the critical success factor in building maintenance management practice for university sectors from four (4) perspectives which include (1) customer (2) internal processes (3) financial and (4) learning and growth perspective. The enhancement of these perspectives is capable to reach the maintenance management goal for a better living environment in university campus.

Keywords: Building maintenance, Critical Success Factor, Management, University

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5708
440 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
439 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar

Abstract:

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
438 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
437 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
436 Integrating Technology into Mathematics Education: A Case Study from Primary Mathematics Students Teachers

Authors: Berna Cantürk-Günhan, Esra Bukova-Güzel

Abstract:

The purpose of the study is to determine the primary mathematics student teachers- views related to use instructional technology tools in course of the learning process and to reveal how the sample presentations towards different mathematical concepts affect their views. This is a qualitative study involving twelve mathematics students from a public university. The data gathered from two semi-structural interviews. The first one was realized in the beginning of the study. After that the representations prepared by the researchers were showed to the participants. These representations contain animations, Geometer-s Sketchpad activities, video-clips, spreadsheets, and power-point presentations. The last interview was realized at the end of these representations. The data from the interviews and content analyses were transcribed and read and reread to explore the major themes. Findings revealed that the views of the students changed in this process and they believed that the instructional technology tools should be used in their classroom.

Keywords: Integrating Technology, Mathematics Education, Primary Education, Teacher Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022