Search results for: Time delay
4419 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound
Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki
Abstract:
This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.
Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6654418 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: Malware detection, network security, targeted attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61254417 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study
Authors: Regius Asiimwe, Amir Anvar
Abstract:
This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29414416 Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils
Authors: H. Taheri Shahraiyni, B. Ataie Ashtiani
Abstract:
Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.Keywords: Finite Difference methods, Richards equation, fullyimplicit, Crank-Nicolson, Runge-Kutta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23864415 Overview of Multi-Chip Alternatives for 2.5D and 3D Integrated Circuit Packagings
Authors: Ching-Feng Chen, Ching-Chih Tsai
Abstract:
With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to such issues of the short channel effect and the development of the high numerical aperture (NA) lithography equipment. In the context of the ever-increasing technical requirements of portable devices and high-performance computing (HPC), relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (IC) based on the updated transistor structure and technology nodes. We conclude that multi-chip solutions for 2.5D and 3D IC packaging can prolong Moore’s Law.
Keywords: Moore’s Law, High Numerical Aperture, Power Consumption-Performance-Area-Cost-Cycle Time to Market, PPACC, 2.5 and 3D-Very-Large-Scale Integration Packaging, Through Silicon Vi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484414 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors
Authors: J. Madureira, R. Lagido, I. Sousa
Abstract:
Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.
Keywords: Inertial Measurement Unit (IMU), Global Positioning System (GPS), smartphone, surfing performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644413 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.
Keywords: Temple painting, painting material, conservation, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12864412 Can Exams Be Shortened? Using a New Empirical Approach to Test in Finance Courses
Authors: Eric S. Lee, Connie Bygrave, Jordan Mahar, Naina Garg, Suzanne Cottreau
Abstract:
Marking exams is universally detested by lecturers. Final exams in many higher education courses often last 3.0 hrs. Do exams really need to be so long? Can we justifiably reduce the number of questions on them? Surprisingly few have researched these questions, arguably because of the complexity and difficulty of using traditional methods. To answer these questions empirically, we used a new approach based on three key elements: Use of an unusual variation of a true experimental design, equivalence hypothesis testing, and an expanded set of six psychometric criteria to be met by any shortened exam if it is to replace a current 3.0-hr exam (reliability, validity, justifiability, number of exam questions, correspondence, and equivalence). We compared student performance on each official 3.0-hr exam with that on five shortened exams having proportionately fewer questions (2.5, 2.0, 1.5, 1.0, and 0.5 hours) in a series of four experiments conducted in two classes in each of two finance courses (224 students in total). We found strong evidence that, in these courses, shortening of final exams to 2.0 hrs was warranted on all six psychometric criteria. Shortening these exams by one hour should result in a substantial one-third reduction in lecturer time and effort spent marking, lower student stress, and more time for students to prepare for other exams. Our approach provides a relatively simple, easy-to-use methodology that lecturers can use to examine the effect of shortening their own exams.
Keywords: Exam length, psychometric criteria, synthetic experimental designs, test length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15074411 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms
Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano
Abstract:
CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15634410 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49994409 A Review on Factors Influencing Implementation of Secure Software Development Practices
Authors: Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin
Abstract:
More and more businesses and services are depending on software to run their daily operations and business services. At the same time, cyber-attacks are becoming more covert and sophisticated, posing threats to software. Vulnerabilities exist in the software due to the lack of security practices during the phases of software development. Implementation of secure software development practices can improve the resistance to attacks. Many methods, models and standards for secure software development have been developed. However, despite the efforts, they still come up against difficulties in their deployment and the processes are not institutionalized. There is a set of factors that influence the successful deployment of secure software development processes. In this study, the methodology and results from a systematic literature review of factors influencing the implementation of secure software development practices is described. A total of 44 primary studies were analysed as a result of the systematic review. As a result of the study, a list of twenty factors has been identified. Some of factors that affect implementation of secure software development practices are: Involvement of the security expert, integration between security and development team, developer’s skill and expertise, development time and communication between stakeholders. The factors were further classified into four categories which are institutional context, people and action, project content and system development process. The results obtained show that it is important to take into account organizational, technical and people issues in order to implement secure software development initiatives.
Keywords: Secure software development, software development, software security, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25004408 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17454407 Conflation Methodology Applied to Flood Recovery
Authors: E. L. Suarez, D. E. Meeroff, Y. Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.
Keywords: Community resilience, conflation, flood risk, nuisance flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664406 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9114405 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization
Authors: Faramarz Khosravi, Gokhan Izbirak
Abstract:
A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.
Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement, environmental sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9324404 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19784403 Design and Application of NFC-Based Identity and Access Management in Cloud Services
Authors: Shin-Jer Yang, Kai-Tai Yang
Abstract:
In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.
Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11254402 Calibration of Syringe Pumps Using Interferometry and Optical Methods
Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins
Abstract:
Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.
Keywords: Calibration, interferometry, syringe pump, optical method, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7894401 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model
Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat
Abstract:
In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20234400 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.
Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7044399 The Appropriate Time Required for Newborn Calf Camel to Get Optimal Amount of Colostrums Immunoglobulin (IgG) with Relation to Levels of Cortisol and Thyroxin
Authors: Amina M. Bishr, Ahmed B. Magdub, Abdul-Baset R. Abuzweda
Abstract:
A major challenge in camel productivity is the high mortality rate of camel calves in the early stage due to the lack of colostrums. This study investigates the time required for the calves to obtain the optimum amount of the immunoglobulin (IgG). Eleven pregnant female camels (Camelus Dromedarus) were selected randomly and variant in age and gestation. After delivery, 7 calves were obtained and used for this investigation. Colostrum samples were collected from mothers immediately after parturition. Blood samples were obtained from the calves as follow: 0 day (before suckling), 24, 48, 72, 96, 120 and 144 hours, 2nd, 3rd, and 4th weeks post suckling. Blood serum and colostrums whey were separated and used to determine IgG concentration, total protein and concentration of Cortisol and Thyroxin. The results showed high levels of IgG in camel colostrums (328.8 ± 4.5 mg / ml). The IgG concentration in serum of calves was the highest within 1st 24 h after suckling (140.75 mg /ml), and then declined gradually reached lower level at 144 h (41.97 mg / ml). The average turnover rate (t 1/2) of serum IgG in the all cases was 3.22 days. The turnover of ranged from 2.56 days for calves have values of IgG more than average and 7.7 days for those with values below average. In spite of very high levels of thyroxin in sera of new born the results showed no correlation between cortisol and thyroxin with IgG levels.Keywords: Camel, cortisol, IgG, thyroxin, turn-over rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20334398 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama
Abstract:
Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.
Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24054397 A Multiple-Objective Environmental Rationalization and Optimization for Material Substitution in the Production of Stone-Washed Jeans- Garments
Authors: Nabil A. Ibrahim, Nabil M. Abdel Moneim, Mohamed A. Ramadan, Marwa M. Hosni
Abstract:
As the Textile Industry is the second largest industry in Egypt and as small and medium-sized enterprises (SMEs) make up a great portion of this industry therein it is essential to apply the concept of Cleaner Production for the purpose of reducing pollution. In order to achieve this goal, a case study concerned with ecofriendly stone-washing of jeans-garments was investigated. A raw material-substitution option was adopted whereby the toxic potassium permanganate and sodium sulfide were replaced by the environmentally compatible hydrogen peroxide and glucose respectively where the concentrations of both replaced chemicals together with the operating time were optimized. In addition, a process-rationalization option involving four additional processes was investigated. By means of criteria such as product quality, effluent analysis, mass and heat balance; and cost analysis with the aid of a statistical model, a process optimization treatment revealed that the superior process optima were 50%, 0.15% and 50min for H2O2 concentration, glucose concentration and time, respectively. With these values the superior process ought to reduce the annual cost by about EGP 105 relative to the currently used conventional method.Keywords: Cleaner Production, Eco-friendly of jeans garments, Stone washing, Textile Industry, Textile Wet Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20784396 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation
Authors: Chong Zhang, Mu-Xuan Tao
Abstract:
In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.
Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6264395 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel
Authors: Joseph C. Chen, Joshua Cox
Abstract:
This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.
Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10954394 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network
Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan
Abstract:
The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.
Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30174393 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15784392 A Microcontroller Implementation of Constrained Model Predictive Control
Authors: Amira Kheriji Abbes, Faouzi Bouani, Mekki Ksouri
Abstract:
Model Predictive Control (MPC) is an established control technique in a wide range of process industries. The reason for this success is its ability to handle multivariable systems and systems having input, output or state constraints. Neverthless comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprisers as well as a transformer of organizations and markets. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In this paper, we propose an efficient firmware for the implementation of constrained MPC in the performed STM32 microcontroller using interior point method. Indeed, performances study shows good execution speed and low computational burden. These results encourage to develop predictive control algorithms to be programmed in industrial standard processes. The PID anti windup controller was also implemented in the STM32 in order to make a performance comparison with the MPC. The main features of the proposed constrained MPC framework are illustrated through two examples.Keywords: Embedded software, microcontroller, constrainedModel Predictive Control, interior point method, PID antiwindup, Keil tool, C/Cµ language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28084391 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms
Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias
Abstract:
High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.
Keywords: High voltage substations, nature-inspired algorithms, project management, meta-heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12324390 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637