Search results for: Deep Reinforcement Learning
141 Integration of Virtual Learning of Induction Machines for Undergraduates
Authors: Rajesh Kumar, Puneet Aggarwal
Abstract:
In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.
Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890140 Computing Entropy for Ortholog Detection
Authors: Hsing-Kuo Pao, John Case
Abstract:
Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.
Keywords: compression, decision tree, entropy, ortholog, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831139 Evolution of Web Development Techniques in Modern Technology
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
The art of web development in new technologies is a dynamic journey, shaped by the constant evolution of tools and platforms. With the emergence of JavaScript frameworks and APIs, web developers are empowered to craft web applications that are not only robust but also highly interactive. The aim is to provide an overview of the developments in the field. The integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.
Keywords: Web development, software testing, progressive web apps, web and mobile native application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413138 Perception of Secondary Schools’ Students on Computer Education in Federal Capital Territory (FCT-Abuja), Nigeria
Authors: Salako Emmanuel Adekunle
Abstract:
Computer education is referred to as the knowledge and ability to use computers and related technology efficiently, with a range of skills covering levels from basic use to advance. Computer continues to make an ever-increasing impact on all aspect of human endeavours such as education. With numerous benefits of computer education, what are the insights of students on computer education? This study investigated the perception of senior secondary school students on computer education in Federal Capital Territory (FCT), Abuja, Nigeria. A sample of 7500 senior secondary schools students was involved in the study, one hundred (100) private and fifty (50) public schools within FCT. They were selected by using simple random sampling technique. A questionnaire [PSSSCEQ] was developed and validated through expert judgement and reliability coefficient of 0.84 was obtained. It was used to gather relevant data on computer education. Findings confirmed that the students in the FCT had positive perception on computer education. Some factors were identified that affect students’ perception on computer education. The null hypotheses were tested using t-test and ANOVA statistical analyses at 0.05 level of significance. Based on these findings, some recommendations were made which include competent teachers should be employed into all secondary schools. This will help students to acquire relevant knowledge in computer education, technological supports should be provided to all secondary schools; this will help the users (students) to solve specific problems in computer education and financial supports should be provided to procure computer facilities that will enhance the teaching and the learning of computer education.Keywords: Computer education, perception, secondary school, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4067137 Mining User-Generated Contents to Detect Service Failures with Topic Model
Authors: Kyung Bae Park, Sung Ho Ha
Abstract:
Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220136 The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province
Authors: Yanto Santosa, Catharina Yudea
Abstract:
The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.
Keywords: Bird diversity, crops field, impact of oil palm plantation, KJNP estate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803135 Outsourcing the Front End of Innovation
Abstract:
The paper presents a new method for efficient innovation process management. Even though the innovation management methods, tools and knowledge are well established and documented in literature, most of the companies still do not manage it efficiently. Especially in SMEs the front end of innovation - problem identification, idea creation and selection - is often not optimally performed. Our eMIPS methodology represents a sort of "umbrella methodology" - a well-defined set of procedures, which can be dynamically adapted to the concrete case in a company. In daily practice, various methods (e.g. for problem identification and idea creation) can be applied, depending on the company's needs. It is based on the proactive involvement of the company's employees supported by the appropriate methodology and external experts. The presented phases are performed via a mixture of face-to-face activities (workshops) and online (eLearning) activities taking place in eLearning Moodle environment and using other e-communication channels. One part of the outcomes is an identified set of opportunities and concrete solutions ready for implementation. The other also very important result is connected to innovation competences for the participating employees related with concrete tools and methods for idea management. In addition, the employees get a strong experience for dynamic, efficient and solution oriented managing of the invention process. The eMIPS also represents a way of establishing or improving the innovation culture in the organization. The first results in a pilot company showed excellent results regarding the motivation of participants and also as to the results achieved.
Keywords: Creativity, distance learning, front end, innovation, problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213134 Assessing the Sheltering Response in the Middle East: Studying Syrian Camps in Jordan
Authors: Lara A. Alshawawreh, R. Sean Smith, John B. Wood
Abstract:
This study focuses on the sheltering response in the Middle East, specifically through reviewing two Syrian refugee camps in Jordan, involving Zaatari and Azraq. Zaatari camp involved the rapid deployment of tents and shelters over a very short period of time and Azraq was purpose built and pre-planned over a longer period. At present, both camps collectively host more than 133,000 occupants. Field visits were taken to both camps and the main issues and problems in the sheltering response were highlighted through focus group discussions with camp occupants and inspection of shelter habitats. This provided both subjective and objective research data sources. While every case has its own significance and deployment to meet humanitarian needs, there are some common requirements irrespective of geographical region. The results suggest that there is a gap in the suitability of the required habitat needs and what has been provided. It is recommended that the global international response and support could be improved in relation to the habitat form, construction type, layout, function and critically the cultural aspects. Services, health and hygiene are key elements to the shelter habitat provision. The study also identified the amendments to shelters undertaken by the beneficiaries providing insight into their key main requirements. The outcomes from this study could provide an important learning opportunity to develop improved habitat response for future shelters.
Keywords: Culture, post-disaster, refugees, shelters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219133 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.
Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344132 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: Beliefs, Digital stories, Preservice teachers, Practicum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447131 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.
Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740130 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548129 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence
Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park
Abstract:
Scripts are one of the basic text resources to understand broadcasting contents. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches, and provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scene segments consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics by statistical learning method. To tackle this problem, we propose a method to improve topic quality with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, more accurate topical representations lead to get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. By iteratively inferring topics and determining semantically neighborhood scene segments, we draw a topic space represents broadcasting contents well. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.Keywords: Broadcasting contents, generalized P´olya urn model, scripts, text similarity, topic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821128 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency: A Case of Nasarawa State Polytechnic, Lafia
Authors: Ibrahim Dauda Adagye
Abstract:
Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper therefore assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with specific focus on the Nasarawa State Polytechnic, Lafia. The study is survey, hence a simple closed ended questionnaire was developed and administered to a sample of twenty seven (27) member staff from the Bursary and the Internal audit unit of the Nasarawa State Polytechnic, Lafia so as to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analysed using a simple percentage and chi square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, it therefore means that the right staff be assigned the right job and regular checking of the subordinates by their superiors be ensued.
Keywords: Bursary unit, efficiency, Internal control, tertiary educational institutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3899127 Information Filtering using Index Word Selection based on the Topics
Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU
Abstract:
We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463126 Being a Lay Partner in Jesuit Higher Education in the Philippines: A Grounded Theory Application
Authors: Janet B. Badong-Badilla
Abstract:
In Jesuit universities, laypersons, who come from the same or different faith backgrounds or traditions, are considered as collaborators in mission. The Jesuits themselves support the contributions of the lay partners in realizing the mission of the Society of Jesus and recognize the important role that they play in education. This study aims to investigate and generate particular notions and understandings of lived experiences of being a lay partner in Jesuit universities in the Philippines, particularly those involved in higher education. Using the qualitative approach as introduced by grounded theorist Barney Glaser, the lay partners’ concept of being a partner, as lived in higher education, is generated systematically from the data collected in the field primarily through in-depth interviews, field notes and observations. Glaser’s constant comparative method of analysis of data is used going through the phases of open coding, theoretical coding, and selective coding from memoing to theoretical sampling to sorting and then writing. In this study, Glaser’s grounded theory as a methodology will provide a substantial insight into and articulation of the layperson’s actual experience of being a partner of the Jesuits in education. Such articulation provides a phenomenological approach or framework to an understanding of the meaning and core characteristics of Jesuit-Lay partnership in Jesuit educational institution of higher learning in the country. This study is expected to provide a framework or model for lay partnership in academic institutions that have the same practice of having lay partners in mission.Keywords: Grounded theory, Jesuit mission in higher education, lay partner, lived experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075125 Identifying Teachers’ Perception of Integrity in School-Based Assessment Practice: A Case Study
Authors: Abd Aziz Bin Abd Shukor, Eftah Binti Moh Hj Abdullah
Abstract:
This case study aims to identify teachers’ perception as regards integrity in School-Ba sed Assessment (PBS) practice. This descriptive study involved 9 teachers from 4 secondary schools in 3 districts in the state of Perak. The respondents had undergone an integrity in PBS Practice interview using a focused group discussion method. The overall findings showed that the teachers believed that integrity in PBS practice could be achieved by adjusting the teaching methods align with learning objectives and the students’ characteristics. Many teachers, parents and student did not understand the best practice of PBS. This would affect the integrity in PBS practice. Teachers did not emphasis the principles and ethics. Their integrity as an innovative public servant may also be affected with the frequently changing assessment system, lack of training and no prior action research. The analysis of findings showed that the teachers viewed that organizational integrity involving the integrity of PBS was difficult to be implemented based on the expectations determined by Malaysia Ministry of Education (KPM). A few elements which assisted in the achievement of PBS integrity were the training, students’ understanding, the parents’ understanding of PBS, environment (involving human resources such as support and appreciation and non-human resources such as technology infrastructure readiness and media). The implications of this study show that teachers, as the PBS implementers, have a strong influence on the integrity of PBS. However, the transformation of behavior involving PBS integrity among teachers requires the stabilisation of support and infrastructure in order to enable the teachers to implement PBS in an ethical manner.
Keywords: Assessment integrity, integrity, perception, school-based assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606124 Teaching Ethical Behaviour: Conversational Analysis in Perspective
Authors: Nikhil Kewal Krishna Mehta
Abstract:
In the past researchers have questioned the effectiveness of ethics training in higher education. Also, there are observations that support the view that ethical behaviour (range of actions)/ethical decision making models used in the past make use of vignettes to explain ethical behaviour. The understanding remains in the perspective that these vignettes play a limited role in determining individual intentions and not actions. Some authors have also agreed that there are possibilities of differences in one’s intentions and actions. This paper makes an attempt to fill those gaps by evaluating real actions rather than intentions. In a way this study suggests the use of an experiential methodology to explore Berlo’s model of communication as an action along with orchestration of various principles. To this endeavor, an attempt was made to use conversational analysis in the pursuance of evaluating ethical decision making behaviour among students and middle level managers. The process was repeated six times with the set of an average of 15 participants. Similarities have been observed in the behaviour of students and middle level managers that calls for understanding that both the groups of individuals have no cognizance of their actual actions. The deliberations derived out of conversation were taken a step forward for meta-ethical evaluations to portray a clear picture of ethical behaviour among participants. This study provides insights for understanding demonstrated unconscious human behaviour which may fortuitously be termed both ethical and unethical.
Keywords: Berlo’s action model of communication, Conversational Analysis, Ethical behaviour, Ethical decision making, experiential learning, Intentions and Actions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546123 Assessment of the Illustrated Language Activities of the Portage Guide to Early Education
Authors: Ofelia A. Damag
Abstract:
The study was focused on the development and assessment of the illustrated language activities of the 1996 Edition of the Portage Guide to Early Education. It determined the extent of appropriateness, applicability, time efficiency and aesthetics of the illustrated language activities to be used as instructional material not only by teachers, but parents and caregivers as well. The eclectic research design was applied in this study using qualitative and quantitative methods. To determine the applicability and time efficiency of the study, a try out was done. Since the eclectic research design was used, it made use of a researcher-made survey questionnaire and focus group discussion. Analysis of the data was done through weighted mean and ANOVA. The respondents of the study were representatives of Special Education (SPED) teachers, caregivers and parents of a special-needs child, particularly with difficulties in learning basic language skills. The results of the study show that a large number of respondents are SPED teachers and caregivers and are mostly college graduates. Many of them have earned units towards Master’s studies. Moreover, a majority of the respondents have not attended seminars or in-service training in early intervention for them to be more competent in the area of specialization. It is concluded that the illustrated language activities under review in this study are appropriate, applicable, time efficient and aesthetic for use as a tool in teaching. The recommendations are focused on the advocacy for SPED teachers, caregivers and parents of special-needs children to be more consistent in the implementation of the new instructional materials as an aid in an intervention program.
Keywords: Illustrated language activities, inclusion, portage guide to early education, special educational needs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430122 The Effect of Motor Learning Based Computer-Assisted Practice for Children with Handwriting Deficit – Comparing with the Effect of Traditional Sensorimotor Approach
Authors: Shao-Hsia Chang, Nan-Ying Yu
Abstract:
The objective of this study was to test how advanced digital technology enables a more effective training on the handwriting of children with handwriting deficit. This study implemented the graphomotor apparatuses to a computer-assisted instruction system. In a randomized controlled trial, the experiments for verifying the intervention effect were conducted. Forty two children with handwriting deficit were assigned to computer-assisted instruction, sensorimotor training or control (no intervention) group. Handwriting performance was measured using the Elementary reading/writing test and computerized handwriting evaluation before and after 6 weeks of intervention. Analysis of variance of change scores were conducted to show whether statistically significant difference across the three groups. Significant difference was found among three groups. Computer group shows significant difference from the other two groups. Significance was denoted in near-point, far-point copy, dictation test, and writing from phonetic symbols. Writing speed and mean stroke velocity in near-, far-point and short paragraph copy were found significantly difference among three groups. Computer group shows significant improvement from the other groups. For clinicians and school teachers, the results of this study provide a motor control based insight for the improvement of handwriting difficulties.
Keywords: Dysgraphia, computerized handwriting evaluation, sensorimotor program, computer assisted program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094121 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: Natural language processing, end user development; natural language interfaces, human computer interaction, data recognition, dialog systems, spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128120 Localizing and Recognizing Integral Pitches of Cheque Document Images
Authors: Bremananth R., Veerabadran C. S., Andy W. H. Khong
Abstract:
Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.Keywords: Cheque reading, Connectivity checking, Text localization, Texture analysis, Turing machine, Signature verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660119 Dynamic Threshold Adjustment Approach For Neural Networks
Authors: Hamza A. Ali, Waleed A. J. Rasheed
Abstract:
The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.
Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633118 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018117 A Questionnaire-Based Survey: Therapist’s Response towards the Upper Limb Disorder Learning Tool
Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah
Abstract:
Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).
Keywords: Upper limb disorders, Clinical education tool, Inter/intra-raters variability, Spasticity, Modified Ashworth Scale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875116 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider
Abstract:
This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117115 Gender Differences in Biology Academic Performances among Foundation Students of PERMATApintar® National Gifted Center
Authors: N. Nor Azman, M. F. Kamarudin, S. I. Ong, N. Maaulot
Abstract:
PERMATApintar® National Gifted Center is, to the author’s best of knowledge, the first center in Malaysia that provides a platform for Malaysian talented students with high ability in thinking. This center has built a teaching and learning biology curriculum that suits the ability of these gifted students. The level of PERMATApintar® biology curriculum is basically higher than the national biology curriculum. Here, the foundation students are exposed to the PERMATApintar® biology curriculum at the age of as early as 11 years old. This center practices a 4-time-a-year examination system to monitor the academic performances of the students. Generally, most of the time, male students show no or low interest towards biology subject compared to female students. This study is to investigate the association of students’ gender and their academic performances in biology examination. A total of 39 students’ scores in twelve sets of biology examinations in 3 years have been collected and analyzed by using the statistical analysis. Based on the analysis, there are no significant differences between male and female students against the biology academic performances with a significant level of p = 0.05. This indicates that gender is not associated with the scores of biology examinations among the students. Another result showed that the average score for male studenta was higher than the female students. Future research can be done by comparing the biology academic achievement in Malaysian National Examination (Sijil Pelajaran Malaysia, SPM) between the Foundation 3 students (Grade 9) and Level 2 students (Grade 11) with similar PERMATApintar® biology curriculum.
Keywords: Academic performances, biology, gender differences, gifted students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304114 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications
Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber
Abstract:
Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.
Keywords: Classification, High dimensional data, Machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389113 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts
Abstract:
There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.
Keywords: Robotics, computational thinking, programming, young children, flowcharts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826112 The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies
Authors: Matheus Borges Carneiro, Fabiane Letícia Lizarelli, José Carlos de Toledo
Abstract:
The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.
Keywords: Balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590