Search results for: scholarly search
578 Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule
Authors: P. Jomsri
Abstract:
Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.
Keywords: association rule, information retrieval, research paper bookmarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444577 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956576 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Authors: D. Naga Ravi Kiran, C. G. Dethe
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027575 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792574 Optimized Algorithm for Particle Swarm Optimization
Authors: Fuzhang Zhao
Abstract:
Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868573 Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies
Authors: Jayme G. A. Barbedo, Amauri Lopes
Abstract:
This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals.
Keywords: Closely spaced sinusoids, high-resolution parameter estimation, optimized grid search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871572 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF
Authors: Karunakar A K, Manohara Pai M M
Abstract:
In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618571 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619570 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles
Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin
Abstract:
A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588569 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076568 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182567 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920566 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akın, İbrahim Aydoğdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449565 Balancing Strategies for Parallel Content-based Data Retrieval Algorithms in a k-tree Structured Database
Authors: Radu Dobrescu, Matei Dobrescu, Daniela Hossu
Abstract:
The paper proposes a unified model for multimedia data retrieval which includes data representatives, content representatives, index structure, and search algorithms. The multimedia data are defined as k-dimensional signals indexed in a multidimensional k-tree structure. The benefits of using the k-tree unified model were demonstrated by running the data retrieval application on a six networked nodes test bed cluster. The tests were performed with two retrieval algorithms, one that allows parallel searching using a single feature, the second that performs a weighted cascade search for multiple features querying. The experiments show a significant reduction of retrieval time while maintaining the quality of results.
Keywords: balancing strategies, multimedia databases, parallelprocessing, retrieval algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422564 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979563 Solving Facility Location Problem on Cluster Computing
Authors: Ei Phyo Wai, Nay Min Tun
Abstract:
Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.Keywords: cluster, cost, demand, facility location
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485562 Manipulation of Image Segmentation Using Cleverness Artificial Bee Colony Approach
Authors: Y. Harold Robinson, E. Golden Julie, P. Joyce Beryl Princess
Abstract:
Image segmentation is the concept of splitting the images into several images. Image Segmentation algorithm is used to manipulate the process of image segmentation. The advantage of ABC is that it conducts every worldwide exploration and inhabitant exploration for iteration. Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) encompass a number of search problems. Cleverness Artificial Bee Colony algorithm has been imposed to increase the performance of a neighborhood search. The simulation results clearly show that the presented ABC methods outperform the existing methods. The result shows that the algorithms can be used to implement the manipulator for grasping of colored objects. The efficiency of the presented method is improved a lot by comparing to other methods.Keywords: Color information, EPSO, ABC, image segmentation, particle swarm optimization, active contour, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291561 Decoupled Scheduling in Meta Environment
Authors: Ponsy R.K. Sathia Bhama, Thamarai Selvi Soma Sundaram, R. Sivakama Sundari, R. Bakiyalakshmi, K. Thamizharasi
Abstract:
Grid scheduling is the process of mapping grid jobs to resources over multiple administrative domains. Traditionally, application-level schedulers have been tightly integrated with the application itself and were not easily applied to other applications. This design is generic that decouples the scheduler core (the search procedure) from the application-specific (e.g. application performance models) and platform-specific (e.g. collection of resource information) components used by the search procedure. In this decoupled approach the application details are not revealed completely to broker, but customer will give the application to resource provider for execution. In a decoupled approach, apart from scheduling, the resource selection can be performed independently in order to achieve scalability.Keywords: Meta, grid scheduling, application-level scheduler, decouple, scheduler core and performance model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276560 Lecture Video Indexing and Retrieval Using Topic Keywords
Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa
Abstract:
In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.
Keywords: Video indexing and retrieval, lecture videos, content based video search, multimodal indexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554559 Data Extraction of XML Files using Searching and Indexing Techniques
Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare
Abstract:
XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.
Keywords: XML Retrieval, Indexed Search, Information Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782558 An Integrated Framework for the Realtime Investigation of State Space Exploration
Authors: Jörg Lassig, Stefanie Thiem
Abstract:
The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382557 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning
Authors: Aleksandar Tsenov
Abstract:
The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721556 Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem
Authors: Muthu Solayappan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.Keywords: unconstrained binary quadratic programming, perturbation, interior point methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523555 Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem
Authors: A.K.M. Khaled Ahsan Talukder, Taibun Nessa, Kaushik Roy
Abstract:
The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem.Keywords: Genetic Algorithm, Evolutionary Optimization, Multi Objective Optimization, Non-linear Schema Theorem, WCSPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411554 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: Augmented reality framework, server-client model, vision-based tracking, image search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140553 On Enhancing Robustness of an Evolutionary Fuzzy Tracking Controller
Authors: H. Megherbi, A. C. Megherbi, N. Megherbi, K. Benmahamed
Abstract:
This paper presents three-phase evolution search methodology to automatically design fuzzy logic controllers (FLCs) that can work in a wide range of operating conditions. These include varying load, parameter variations, and unknown external disturbances. The three-phase scheme consists of an exploration phase, an exploitation phase and a robustness phase. The first two phases search for FLC with high accuracy performances while the last phase aims at obtaining FLC providing the best compromise between the accuracy and robustness performances. Simulations were performed for direct-drive two-axis robot arm. The evolved FLC with the proposed design technique found to provide a very satisfactory performance under the wide range of operation conditions and to overcome problem associated with coupling and nonlinearities characteristics inherent to robot arms.
Keywords: Fuzzy logic control, evolutionary algorithms, robustness, exploration/exploitation phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447552 Utilizing Ontologies Using Ontology Editor for Creating Initial Unified Modeling Language (UML)Object Model
Authors: Waralak Vongdoiwang Siricharoen
Abstract:
One of object oriented software developing problem is the difficulty of searching the appropriate and suitable objects for starting the system. In this work, ontologies appear in the part of supporting the object discovering in the initial of object oriented software developing. There are many researches try to demonstrate that there is a great potential between object model and ontologies. Constructing ontology from object model is called ontology engineering can be done; On the other hand, this research is aiming to support the idea of building object model from ontology is also promising and practical. Ontology classes are available online in any specific areas, which can be searched by semantic search engine. There are also many helping tools to do so; one of them which are used in this research is Protégé ontology editor and Visual Paradigm. To put them together give a great outcome. This research will be shown how it works efficiently with the real case study by using ontology classes in travel/tourism domain area. It needs to combine classes, properties, and relationships from more than two ontologies in order to generate the object model. In this paper presents a simple methodology framework which explains the process of discovering objects. The results show that this framework has great value while there is possible for expansion. Reusing of existing ontologies offers a much cheaper alternative than building new ones from scratch. More ontologies are becoming available on the web, and online ontologies libraries for storing and indexing ontologies are increasing in number and demand. Semantic and Ontologies search engines have also started to appear, to facilitate search and retrieval of online ontologies.Keywords: Software Developing, Ontology, Ontology Library, Artificial Intelligent, Protégé, Object Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877551 Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters
Authors: Jyotsna Ogale, Alok Jain
Abstract:
In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.Keywords: Window function, Cosine modulated filterbank, Local search optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600550 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding
Authors: Seongsoo Lee
Abstract:
Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.
Keywords: Motion estimation, test zone search, high efficiency video coding, processing element, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555549 Identity Negotiation of the Black African Diaspora through Discourse with Singaporeans
Authors: Sri Ranjini Mei Hua, Vivian Hsueh-hua Chen
Abstract:
The African Diaspora in Singapore (and larger Asia) is a topic that has received little scholarly attention and research. This exploratory study will analyze the changing identity of Africans throughout the process of cultural adaptation in Singapore. For the focus of this study, “black Africans" will be defined as any black Africans from sub-Saharan Africa who have lived in Singapore for at least six months. The dialectic relationship between Singaporean conceptions of black African identity and African self-consciousness will be analyzed from the perspective of black Africans so as to evaluate the impact of intercultural discourse on the evolution of the African identity in Singapore.Keywords: African, Diaspora, identity negotiation, interculturalcommunication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943