
 

 

  
 
Abstract—Grid scheduling is the process of mapping grid jobs to 

resources over multiple administrative domains. Traditionally, 
application-level schedulers have been tightly integrated with the 
application itself and were not easily applied to other applications. 
This design is generic that decouples the scheduler core (the search 
procedure) from the application-specific (e.g. application 
performance models) and platform-specific (e.g. collection of 
resource information) components used by the search procedure. In 
this decoupled approach the application details are not revealed 
completely to broker, but customer will give the application to 
resource provider for execution. In a decoupled approach, apart from 
scheduling, the resource selection can be performed independently in 
order to achieve scalability.  

 
Keywords—Meta, grid scheduling, application-level scheduler, 

decouple, scheduler core and performance model. 

I. INTRODUCTION 
RID is a system for management and aggregation of 
autonomous, heterogeneous, computational and storage 

resources across geographical and administrational 
boundaries. Grid computing is a relatively new distributed 
computing paradigm that is gaining importance. It offers a 
solution to the increasing demand of highly computational and 
storage power, without requiring any extraordinary 
investments in the hardware infrastructure. However, in many 
cases the grid is not utilized properly without further 
optimization such as scheduling mechanisms for efficient 
assignment of application to available resources [4]. So 
application scheduling is the key issue for deploying parallel 
and distributed applications at large scale in grid. 

For the purpose of application scheduling, the problems of 
discovering available resources, selecting an application-
appropriate subset of those resources, and mapping of data 
and/or tasks onto selected resources are addressed. This 
scheduler design seeks flexibility through modularity. And 
that modules will explicitly decouples the scheduler core (the 
search procedure) from application-specific (e.g. performance 
models) and platform-specific (e.g. resource information 
collection) components used by the search procedure. This 
scheduling approach focuses on minimizing the execution 
time of a single application on a set of potentially shared 
resources. This approach has been termed application-level 
scheduling [2].  

 

 
 

II. DECOUPLED SCHEDULING 
This section describes the decoupled scheduling approach. 

To provide context for this description, the detailed 
scheduling scenario is addressed. A user has an application 
and wishes to execute that application on computational grid 
resources. The application is parallel and may involve 
significant inter-process communication. The target 
Computational Grid consists of heterogeneous workstations 
connected by LANs and/or WANs [2]. When the user is ready 
with the application, the broker is contacted to submit the 
requirements of the application such as application type, cost 
and duration. The broker in turn, searches for the suitable 
resource providers of those requirements submitted by the 
user and returns the domain address of resource provider to 
the user. Using the domain address, user will then contact the 
resource provider. The provider then retrieves CPU speed, 
memory, cache size and load average from its nodes and 
calculates the completion time for the given application in all 
nodes. The least suffered node (least completion timed node) 
is selected to execute the application. 
 

TABLE I 
PROPOSED ALGORITHMS 

Algorithms Description 
 

 
Dynamic Fastest Processor 
Task First (DFPTF) 
 

 
This algorithm provides 
fastest processors to largest 
task. It is dynamic and avoids 
starvation. The metric 
considered for this algorithm 
is task size. 

 
Sufferage  

 
This retrieves the least 
suffering machine for a 
particular job. Metrics 
considered are processor 
speed, memory capacity, 
cache size and load average. 

 
Max-Min-Max 
 

 
Both Max-Min and Min-Min 
algorithms are coupled. This 
algorithm prefers either large 
or small application based on 
number of large or small 
applications. It is dynamic 
and the parameter considered 
for this algorithm is execution 
time. 

Decoupled Scheduling in Meta Environment 
Ponsy R.K. Sathia Bhama, Thamarai Selvi Soma Sundaram, R. Sivakama Sundari, R. Bakiyalakshmi, 

and K. Thamizharasi 

G 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007 

646International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

03
12

.p
df



 

 

III. PHASES OF SCHEDULING 
The scheduler performs the following sequential tasks 

• Phase1: Resource Discovery 

• Phase2: Resource Monitoring 

• Phase3: Resource Selection. 

• Phase4: Job Scheduling 

• Phase5: Job execution 

The scheduler is responsible for resource discovery, resource 
monitoring and resource selection. During resource discovery, 
lists of authenticated resources that are available for job 
submission are identified. In order to cope with the dynamic 
nature of the Grid, a scheduler will have dynamic state 
information about the available resources into its decision-
making process. The resource selection algorithm is 
responsible for selecting the resource providers that is capable 
of executing the application. The scheduling algorithm will 
make the decisions of which task is to be run in which node 
under the resource provider. This includes ordering the list of 
machines in a resource provider for executing the task. The 
monitoring part handles the issue of fault tolerance by 
broadcasting the status periodically between the nodes. 
 

Resource Discovery & Monitoring 
An information service is a vital component of the grid 

infrastructure. It maintains knowledge about resource 
availability, capacity, and current utilization. Within any grid, 
both CPU and data resources will fluctuate depending on their 
availability to process and to share data. As resources become 
free within the grid, they can update their status within the 
grid information services. The client, broker, and/or grid 
resource manager uses this information to make informed 
decisions on resource assignments. The information service is 
designed to provide:  

 
1. Efficient delivery of state information from a single 

source  
2. Common discovery and enquiry mechanisms across 

all grid entities 
Information service providers are programs that provide 
information to the directory about the state of resources. 
Examples of information that is gathered includes: 

1. Static host information : Operating system name and 
version, processor vendor/model/version/ 
speed/cache size, number of processors, total 
physical memory, total virtual memory, devices, 
service type/protocol/port  

2.  Dynamic host information : Load average, queue 
entries, and so on  

3. Storage system information  : Total disk space, free 
disk space, and so on  

4.  Network information  Network bandwidth, latency, 
measured and predicted  

5. Highly dynamic information Free physical memory, 
free virtual memory, free number of processors, and 
so on  

The Grid Information Service (GIS), also known as the 
Monitoring and Discovery Service (MDS), provides the 
information services in Globus. The MDS uses the 
Lightweight Directory Access Protocol (LDAP) as an 
interface to the resource information. Monitoring and 
Discovery Service (MDS): MDS provides access to static and 
dynamic information of resources. Basically, it contains the 
following components:  

 
1. Grid Resource Information Service (GRIS)  
2.  Grid Index Information Service (GIIS) 
3.  Information providers 
4.  MDS client 

 

 
  

Fig. 1 Grid Scheduling Infrastructures 

 
Globus Resource Allocation Manager (GRAM) is part of 

the Globus Toolkit used for job submission. The Gram Job 
Launcher portlet allows a user to submit jobs to a Grid 
environment using the Globus GRAM protocol. For this the 
user must have a valid GSI Proxy Certificate which can be 
loaded through the Proxy Manager Portlet. GIS - Grid 
Information Service GIS is part of the Globus Toolkit used to 
manage resources information. 
 

Resource Selection 
The scheduler is responsible for finding suitable resource 

provider. The records of previous applications types met by 
the scheduler are stored. So that, if any of the application type 
that is already met by the scheduler comes for the second time, 
scheduler will allocate the resource provider based on past 
records instead of searching once again.  

If the application comes for the very first time, then 
application’s resources and provider’s resources are mapped. 
If the match exists, address of provider is given to the 
customer. If the match exists for more than one provider, the 
tie will be broken using parameters such as job failure rate and 
bandwidth. 
 
 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007 

647International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

03
12

.p
df



 

 

IV. SCHEDULING 

A. Resource Broker 
Whenever the user wants to execute the application, 

resource broker is contacted for retrieving the resource 
provider’s address. The resource broker will maintain a policy 
regarding the acceptance of application based on the cost 
criteria. Once it accepts the application, a global queue is 
maintained. The resource provider will provide the complete 
list of all machines available in grid. Since the grid is a 
dynamic environment, the broker will watch over the changes 
in environment and keeps updating. 

The algorithm behind the global queue is Max-Min-Max. 
This algorithm is used for selecting an application from the 
global queue for allocation .Max-Min [1] is a static algorithm 
gives highest priority to largest application, whereas Min-Min 
[1] is a static algorithm which gives highest priority to shortest 
application. In order to avoid starvation, both algorithms are 
coupled. This proposed algorithm is called Max-Min-Max 
algorithm (Since preference is given to max-min algorithm, 
the name is max-min-max instead of min-max-min) which is 
described below. 
 

Step 1: Start. 

Step 2: Take the execution time of all the application in the 

queue. Let the number of applications be n. 

Step 3: Compute the average execution time (E) that is E= (∑ 

execution time)/n. 

Step 4: All application in the queue that has their execution 
time above E are considered as largest application. (L). 
Step 5: All application in the queue that has their execution 
time below E are shortest application (S).  
Step 6: If n (L)>=n(S) then start with max-min algorithm  
Step 7: min-min and max-min algorithm will consecutively 
alternate it. 
Step 8: Else start with min-min algorithm  
Step 9: max-min and min-min algorithm will consecutively 
alternate it. 
Step 10: If there are next set of applications go to step2 and 
repeat the steps 2-9. 
Step 11: Else stop. 
 
 

1) Algorithm Analysis (Max-Min-Max) 
 

TABLE II 
ARRIVAL OF JOBS                    

Jobs Execution time 
J1 10 
J2 29 
J3 3 
J4 7 
J5 12 

 
  

 

  First Come First Serve Algorithm: 

0
10
20
30
40
50
60
70

Execution time

J1 J2 J3 J4 J5

Jobs

Job execution time

 
 

J1 
 
J2 
 

J3 J4 J5 

       0        10               39           42         49                    61 

Average waiting time=(0+10+39+42+49)/5 = 28 milliseconds 
 

Max-Min-Max Algorithm: 
 
 
 
 
 
 
 
 

J3 
 
J2 
 

J4 J1 J5 

     0         3                        31         38           40             60 
 
Average waiting time=(0+3+31+38+40)/5 = 22.4 milliseconds 
 

2) Pre-Schedule            
Broker will maintain three databases for finding suitable 

resource provider. Records of previous applications types met 
by the broker are stored in one database (DB1). So that, if any 
of the application type that is already met by the broker comes 
for the second time, broker will allocate the resource provider 
based on past records instead of searching once again.  

Broker also maintains all application types along with their 
needed resources in another database (DB2). Resource 
provider’s information will be stored in another database 
(DB3). If the application comes for the very first time, then 
application’s resources and provider’s resources are mapped. 
If the match exists address of provider is updated in DB1 and 
given to the customer. If the match exists for more than one 
provider, the tie will be broken using parameters such as job 
failure rate and bandwidth. 
 

 

 

0
10
20
30
40
50
60

Execution 
time

J3 J2 J4 J1 J5

Jobs

Job execution time

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007 

648International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

03
12

.p
df



 

 

 
 

Fig. 2 Resource Selection 
 

B. Resource Provider (RP)          
Broker will always listen for new providers. When any 

resource provider comes, they publish themselves to broker. If 
any of the published resources are in use by local queue jobs, 
then the corresponding provider will intimate the broker that 
this resource is not free.  
 

1)  Sufferage  
Customer now contains the application and provider’s 

address. Within the provider which one is least suffered 
machine is selected using sufferage algorithm. The metrics 
considered for this algorithm are CPU speed, free memory, 
cache size, task size and load average [8]. The result of this 
algorithm is ordering of less suffering machines within a 
provider. The algorithm used for scheduling purpose is 
FPLTF (Fast Processor Largest Task First). 
 

Step 1: Start 
Step 2: Get the CPU speed, free memory, cache size, and load 
average of all machine under a selected provider. 
Step 3: Calculate the completion time using formula, 
 

Completion time = TBA + suffering time.        (1) 
 

Suffering time = Task size / (CPU speed * (free memory + 
cache size) * (1- load average ratio))                       (2) 

 

Where, TBA = time for that node to be available. 
 
Step 4: The customer gives the application in terms of number 
of tasks along with their sizes. The task with largest size is 
selected first for scheduling hence framing out Fastest 
Processor Largest Task First algorithm. 
Step 5: Least completion timed node is selected to execute the 
application. 
Step 6: Stop. 
 

 
Fig. 3 Application Scheduling and Execution 

 
Suffering time is directly proportional to task size and 

inversely proportional to CPU speed, free memory, cache size 
and load balance. If the processor has more speed, more free 
memory and cache, more load balance (1-load average) then 
suffering time for that node to execute the given task is less. If 
the preferred node is not available or too busy, then head node 
will allocate the task to next preferred node. 
 

2)  Algorithm Analysis (FPLTF) 
Jobs sizes 

16%

48%5%

%

20%
J1

J2

J3

J4

J5  
 
 

Fastest Processor Largest Task First 

 
 
 
 
 
 
 
 
 
 

First In First Out                                                                              

 

 

 

 
 
 
 
* considering one node for five jobs to execute. 

0%

50%

100%

node 1

awaiting
for node
acquired
node

0%

50%

100%

no de 1

awaiting for
node
acquired
node

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007 

649International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

03
12

.p
df



 

 

V. CONCLUSION 
Thus a decoupled scheduling approach is considered for 

parallel applications in a computational grid environment. 
Moreover an exhaustive search of machines in the grid for a 
similar kind of applications is also reduced, which will lead to 
less time consumption. And also the performance is evaluated 
based on the execution time, processor speed, memory 
capacity, bandwidth, and cache size and load average. Thus 
the application has been decoupled from scheduling and also 
dynamic information is exploited at run time for improved 
scheduling. 

 

VI. RESULTS AND DISCUSSION 

A pre-scheduling concept is used, since the application 
modules are not revealed to the broker. As per that, the 
limitation lies here is searching and retrieving more databases. 
Moreover, when the application comes for the first time, 
tedious search process will occur, which in turn consumes 
time. Thereafter when the application comes, this search 
process can be avoided using pre-schedule 
 

REFERENCES   
[1] “Risk-Resilient Heuristics and Genetic Algorithms for Security-Assured 

Grid Job Scheduling”  Shanshan Song, Kai Hwang, Fellow, IEEE, and 
Yu-Kwong Kwok, Senior Member, IEEE transactions on computers, vol. 
55, no. 6, June 2006 . 

[2] “A Decoupled Scheduling Approach for the GrADS Program 
Development Environment” Holly Dail, Henri Casanova and Fran 
Berman, IEEE 2002. 

[3] “Grid Brokers and Meta schedulers Market Overview” Ilona Gaweda 
and Chris Wilk, Feb 2006. 

[4] “Dynamic Scheduling  in Grid Systems” Maria Chtepen, sixth FirW PhD 
Symposium, Faculty of Engineering, Ghent University, 30th November 
2005-paper nr.110. 

[5] “Operating Systems Concepts” Abraham Silberschatz and Peter B. 
Galvin, fourth Edition. 

[6] “The Anatomy of the Grid” Ian Foster, Carl Kesselman and Steven 
Tuecke. 

[7] “The Physiology of the Grid-An Open Grid Services Architecture for 
Distributed Systems Integration” Ian Foster,

 

Carl Kesselman,
 

Jeffrey M. 
Nick and

 

Steven Tuecke.
 

 
[8] “Trading Cycles for Information: Using Replication to Schedule Bag-of-

Tasks Applications on Computational Grids” Daniel Paranhos da Silva, 
Walfredo Cirne, Francisco Vilar Brasileiro. 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007 

650International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

03
12

.p
df




